Time Series Regression and Forecasting

Juergen Meinecke

Roadmap

Time Series Terminology, Autocorrelation
Lags, First Differences, Growth Rates

Notation is now slightly different
Instead of an i-subscript, variables will have a t-subscript (this is not a substantive change, just convention for time series)

The variable Y_{t} is the value of Y (for example real GDP) in period t (for example year)

Data set: $\left\{Y_{1}, \ldots, Y_{T}\right\}$ are T observations on the time series Y
We consider only consecutive, evenly-spaced observations (for example, monthly, 1960 to 1999, no missing months)

Missing and unevenly spaced data do not pose a principal problem and only introduce technical complications which we are happy to ignore at this stage

Definition

The first lag of time series Y_{t} is Y_{t-1}.
The j-th lag of time series Y_{t} is Y_{t-j}.

Definition

The first difference of time series Y_{t} is $\Delta Y_{t}:=Y_{t}-Y_{t-1}$.

Definition

The first difference of the logarithm of time series Y_{t} is
$\Delta \ln \left(Y_{t}\right):=\ln \left(Y_{t}\right)-\ln \left(Y_{t-1}\right)$.
With these definitions it is easy to determine the percentage change of a time series Y_{t} between the periods $t-1$ and t :
it is approximately $100 \cdot \Delta \ln \left(Y_{t}\right)$

Example: Quarterly CPI data for the US
I'm starting out with a time series on the price level in the US
Price level here is measured by the consumer price index (CPI)
The specific time series I'm using is labelled CPIAUCSL
It is the Consumer Price Index for All Urban Consumers provided by the Federal Reserve Bank of St. Louis (FRED)

Let's look at two recent measurements

- CPI in the fourth quarter of $2022(2022: Q 4)=298.53$
- CPI in the first quarter of $2023(2023: Q 1)=301.33$

Given this price level data, how do we back out inflation?

We study two approaches: exact and approximate

- CPI in the fourth quarter of $2022(2022: Q 4)=298.53$
- CPI in the first quarter of $2023(2023: Q 1)=301.33$
- Inflation via exact percentage change in CPI, 2022:Q4 to 2023:Q1

$$
100 \cdot\left(\frac{301.33-298.53}{298.53}\right)=0.94 \%
$$

- Inflation via logarithmic approximation instead:

$$
100 \cdot(\ln (301.33)-\ln (298.53))=0.93 \%
$$

The two approaches give slightly different results

It is common to extrapolate up the quarter-to-quarter change to an annual rate

Quarter-to-quarter change at an annual rate

- Annualized inflation via exact percentage change in CPI

$$
4 \cdot 100 \cdot\left(\frac{301.33-298.53}{298.53}\right)=3.75 \%
$$

- Annualized inflation via logarithmic approximation instead:

$$
4 \cdot 100 \cdot(\ln (301.33)-\ln (298.53))=3.73 \%
$$

Answers the question: if the current quarter inflation continued throughout the year, what would annual inflation be?

It's a simple extrapolation really

Time Series Regression and Forecasting

Juergen Meinecke

Roadmap

Time Series Terminology, Autocorrelation
Autocorrelation

The correlation of a time series with its own lagged values is called autocorrelation or serial correlation

Definition

The j-th autocovariance of a time series Y_{t} is the covariance between Y_{t} and its j-th lag, $Y_{t-j}: \operatorname{Cov}\left(Y_{t}, Y_{t-j}\right)$.

The j-th autocorrelation of a time series Y_{t} is the correlation between Y_{t} and its j-th lag, Y_{t-j} :

$$
\rho(j):=\frac{\operatorname{Cov}\left(Y_{t}, Y_{t-j}\right)}{\sqrt{\operatorname{Var}\left(Y_{t}\right) \operatorname{Var}\left(Y_{t-j}\right)}}
$$

The sample autocorrelation is the estimated autocorrelation

Definition

The j-th sample autocorrelation of a time series Y_{t} is the correlation between Y_{t} and its j-th lag, Y_{t-j} :

$$
\begin{aligned}
\hat{\rho}(j) & :=\frac{\widehat{\operatorname{Cov}}\left(Y_{t}, Y_{t-j}\right)}{\widehat{\operatorname{Var}}\left(Y_{t}\right)}, \\
\text { with } \widehat{\operatorname{Cov}\left(Y_{t}, Y_{t-j}\right)}: & :=\frac{1}{T} \sum_{t=j+1}^{T}\left(Y_{t}-\bar{Y}_{j+1, T}\right)\left(Y_{t-j}-\bar{Y}_{1, T-j}\right) \\
\bar{Y}_{p, q} & :=\frac{1}{T-j} \sum_{t=p}^{q} Y_{t} \\
\widehat{\operatorname{Var}}\left(Y_{t}\right) & :=\frac{1}{T} \sum_{t=1}^{T}\left(Y_{t}-\bar{Y}\right)^{2}
\end{aligned}
$$

Two little comments:
Although we only compare T - j pairs of the time series, the division is by T (this is conventional in time series analysis)

When computing the sample autocorrelation, we have implicitly assumed that

- variances are constant over time
- covariances are constant over time (only dependent on the lag length j)

This is justified by stationarity (which we will define next week)

Python example: quarterly CPI data for the US

Using the time series CPIAUCSL on quarterly CPI in the US, I create the quarter-to-quarter inflation at an annualized rate

Python Code

```
> import pandas as pd
> import statsmodels.formula.api as smf
> import numpy as np
> # reading data from spreadsheet (downloaded from FRED):
> df = pd.read_csv('CPIAUCSL.csv')
> # creating quarterly index
> df['date'] = pd.to_datetime(df['DATE'], format='%Y-%m-%d')
> df.index = pd.DatetimeIndex(df.date, name='quarter').to_period('Q')
> # copy of CPI series with easy-to-access name:
> df['cpi'] = df.CPIAUCSL
> # taking logarithm of original series:
df['logcpi'] = np.log(df.cpi)
# creating annualised inflation via differences in logs:
> # (this is the 'first derivative' of 'cpi')
df['infl'] = 400 * df.logcpi.diff()
# creating quarter-on-quarter differences in inflation:
> # (this is the 'second derivative' of 'cpi')
df['dinfl'] = df.infl.diff()
df = df.drop(['DATE', 'CPIAUCSL'], axis=1)
```


Let's take a look at the time series

Python Code

	date	cpi	logepi	infl	dinfl
quarter					
1947Q1	1947-01-01	21.700000	3.077312	NaN	N
1947Q2	1947-04-01	22.010000	3.091497	5.673854	NaN
1947 Q3	1947-07-01	22.490000	3.113071	8.629548	2.955694
1947 Q 4	1947-10-01	23.126667	3.140986	11.166235	2.536687
1948Q1	1948-01-01	23.616667	3.161953	8.386530	-2.779705
1948Q2	1948-04-01	23.993333	3.177776	6.329335	-2.057195
1948Q3	1948-07-01	24.396667	3.194447	6.668199	0.338864
1948 Q 4	1948-10-01	24.173333	3.185250	-3.678565	-10.346764

> \# looking at data: bottom two years
> print(df.tail(8))

	date	cpi	logcpi	infl	dinfl
quarter					
2021Q2	2021-04-01	268.557667	5.593066	7.249858	3.150062
2021Q3	$2021-07-01$	272.887333	5.609059	6.397339	-0.852519
$2021 Q 4$	$2021-10-01$	278.706667	5.630160	8.440337	2.042998
2022Q1	$2022-01-01$	284.893667	5.652116	8.782463	0.342125
2022Q2	$2022-04-01$	291.535667	5.675162	9.218537	0.436075
2022Q3	$2022-07-01$	295.495667	5.688654	5.396727	-3.821810
$2022 Q 4$	$2022-10-01$	298.525000	5.698854	4.079804	-1.316924
$2023 Q 1$	$2023-01-01$	301.330667	5.708208	3.741816	-0.337987

Python Code

> fig, axs = plt.subplots(2, 1, figsize=(8,7))
axs[0].plot(df.date, df.cpi)
axs[0].set_ylabel('CPI')
axs[1].plot(df.date, df.infl)
axs[1].set_ylabel('Inflation (annualised, \%)')
fig.supxlabel('Time')
fig.suptitle('Time Series Plots: CPIAUCSL and Inflation')
plt.show()

Then I look at sample autocorrelations

Python Code

```
> from matplotlib import pyplot as plt
> from statsmodels.graphics.tsaplots import plot_acf
> # creating a 'stacked' plot of 3 rows
> fig, axs = plt.subplots(3, 1, figsize = (8, 14))
> # stacking them
> plot_acf(df.cpi, ax=axs[0], title = 'Sample Autocorrelation for CPIAUCSL')
plot_acf(df.infl, missing='drop', ax=axs[1], title = 'Sample Autocorrelation for Inflation')
plot_acf(df.dinfl, missing='drop', ax=axs[2], title = 'Sample Autocorrelation for D_Inflation')
plt.show()
```

which creates the following plot ...

Increasing degree of 'differentiation' reduces autocorrelation

Python Code Output

These sample autocorrelations show

- the original time series CPIAUCSL (price level as measured by cpi) is very highly serially or auto-correlated
- infl (the first derivative of CPIAUCSL) is still highly serially correlated
- dinfl (the first derivative if infl and second derivative of CPIAUCSL) is not serially correlated anymore

Please bear this in mind, as it will have important ramifications when we want to run auto-regressions using price level or inflation data

Detecting serial correlation by visual inspection is tricky: both series are highly auto-correlated, yet only obvious for CPI

Time Series Regression and Forecasting

Juergen Meinecke

Roadmap

Autoregressive Models and Forecasting
The First Order Autoregressive (AR(1)) Model

A natural starting point for a forecasting model is to use past values of Y (that is, Y_{t-1}, Y_{t-2}, \ldots) to forecast Y_{t}

An autoregression is a regression model in which Y_{t} is regressed against its own lagged values

The number of lags used as regressors is called the order of the autoregression

In a first order autoregression, Y_{t} is regressed against Y_{t-1}
In a p-th order autoregression, Y_{t} is regressed against
$Y_{t-1}, Y_{t-2}, \ldots, Y_{t-p}$

The population $\operatorname{AR}(1)$ model is

$$
Y_{t}=\beta_{0}+\beta_{1} Y_{t-1}+u_{t}
$$

The coefficient β_{1} does NOT have a causal interpretation
If $\beta_{1}=0$ then Y_{t-1} is not useful for forecasting Y_{t}
The $\operatorname{AR}(1)$ model is estimated by OLS regression of Y_{t} on Y_{t-1}
Testing $\beta_{1}=0$ versus $\beta_{1} \neq 0$ provides a test of the hypothesis that Y_{t-1} is not useful for forecasting Y_{t}

Python Code

```
> # creating lagged inflation
> # (will be used as explanatory variable in AR(1) estimation)
> df['l1infl'] = df.infl.shift(1)
> # looking at data: top two years
> print(df[['cpi', 'infl', 'l1infl']].head(8))
            cpi infl l1infl
quarter
\begin{tabular}{lrrr} 
1947Q1 & 21.700000 & NaN & NaN \\
1947Q2 & 22.010000 & 5.673854 & NaN \\
1947Q3 & 22.490000 & 8.629548 & 5.673854 \\
1947Q4 & 23.126667 & 11.166235 & 8.629548 \\
1948Q1 & 23.616667 & 8.386530 & 11.166235 \\
1948Q2 & 23.993333 & 6.329335 & 8.386530 \\
1948Q3 & 24.396667 & 6.668199 & 6.329335 \\
1948Q4 & 24.173333 & -3.678565 & 6.668199
\end{tabular}
> # looking at data: bottom two years
> print(df[['cpi', 'infl', 'l1infl']].tail(8))
            cpi infl l1infl
quarter
2021Q2 268.557667 7.249858 4.099796
2021Q3 272.887333 6.397339 7.249858
2021Q4 278.706667 8.440337 6.397339
2022Q1 284.893667 8.782463 8.440337
2022Q2 291.535667 9.218537 8.782463
2022Q3 295.495667 5.396727 9.218537
2022Q4 298.525000 4.079804 5.396727
2023Q1 301.330667 3.741816 4.079804
```


Here I'm running an $\operatorname{AR}(1)$ estimation for infl

Python Code (output edited)

```
> # first order autoregression:
> ar1 = smf.ols('infl ~ l1infl', data=df, missing='drop').fit(use_t=False)
> print(ar1.summary())
OLS Regression Results
```


Notice: We don't need to use heteroskedasticity-robust standard errors because we are not really interested in statistical inference, instead we want to use the coefficient estimates to produce forecasts

Forecasting

Our main objective when estimating autoregressions is to produce forecasts

We are not interested in causal effects
As a consequence, we are not usually interested in the coefficient estimates of AR models

We only use the coefficient estimates to create a forecast for the dependent variable

External validity is paramount: the model estimated using historical data must hold into the (near) future

But what do I mean by forecast?

Notation

- For an AR(1) model:

$$
\begin{aligned}
& Y_{T+1 \mid T}=\beta_{0}+\beta_{1} Y_{T} \\
& \hat{Y}_{T+1 \mid T}=\hat{\beta}_{0}+\hat{\beta}_{1} Y_{T}
\end{aligned}
$$

- $Y_{T+1 \mid T}$: forecast of Y_{T+1} based on Y_{T}, Y_{T-1}, \ldots using the population coefficients (typically unknown)
- $\hat{Y}_{T+1 \mid T}$: forecast of Y_{T+1} based on Y_{T}, Y_{T-1}, \ldots using the estimated coefficients
- Forecast errors are defined by $\Upsilon_{T+1}-\hat{Y}_{T+1 \mid T}$

Do not confuse predicted values with forecasts

- Predicted values are "in-sample"
- Forecasts are "out-of-sample"
(looking into the future)

Let me explain the difference between predicted values and forecasts
Earlier we estimated the following $\operatorname{AR}(1)$ model for inflation:

$$
\overline{\operatorname{infl}}_{t}=0.9504+0.7235 \cdot \mathrm{infl}_{t-1}
$$

We used data from 1947:Q1-2023:Q1 for the estimation
This means:

- $\overline{\operatorname{infl}}_{2023: Q 2 \mid 2023: Q 1}$ will be a forecast
- $\overline{\operatorname{infl}}_{2023: Q 1 \mid 2022: Q 4}$ will be a predicted value

Let's calculate both
These are simple common sense calculations

Calculation for the predicted value
In the data we observe $\operatorname{infl}_{\text {2022: }}{ }^{4}=4.0798$
Resulting in the predicted value

$$
\widehat{\operatorname{infl}}_{2023: Q 1 \mid 2022: Q 4}=0.9504+0.7235 \cdot 4.0798=3.9021
$$

In my data set I do observe $\operatorname{infl}_{2023: Q 1}=3.7418$ therefore the $\operatorname{infl}{ }_{2023: Q 1}-\widehat{\operatorname{infl}}_{2023: Q 1 \mid 2022: Q 4}$ is the residual for Q1 2023

Calculation for the forecast
In the data we observe infl $_{2023: Q 1}=3.7418$
Resulting in the forecast values

$$
\widehat{\operatorname{infl}}_{2023: Q 2 \mid 2023: Q 1}=0.9504+0.7235 \cdot 3.7418=3.6576
$$

I could wait until July when $\operatorname{infl}_{2023: Q 2}$ is released and calculate the forecast error infl ${ }_{2023: Q 2}-\overline{\operatorname{infl}}_{2023: Q 2 \mid 2023: Q 1}$

Easy to produce predicted values and forecasts in Python Just use the post-regression predict function

It will produce a predicted value when in-sample
It will produce a forecast value when out-of-sample

Python Code

```
> # Prediction for 2023:Q1, and forecast for 2023:Q2
> newdata = 'l1infl' : [df.infl[-2], df.infl[-1]]
ar1.predict(newdata)
0 3.902296
1 3.657747
```


Time Series Regression and Forecasting

Juergen Meinecke

Roadmap

Autoregressive Models and Forecasting
The p-th Order Autoregressive (AR(p)) Model

The population $\operatorname{AR}(p)$ model is

$$
Y_{t}=\beta_{0}+\beta_{1} Y_{t-1}+\beta_{2} Y_{t-2}+\ldots+\beta_{p} Y_{t-p}+u_{t}
$$

The coefficients do NOT have a causal interpretation
To test hypothesis that Y_{t-2}, \ldots, T_{t-p} do not add value over and above Y_{t-1}, use an F-test

We will look at choosing p using a suitable information criterion

Here I'm preparing an AR(4) estimation for infl

Python Code

```
> # creating more lags for inflation
> df['l2infl'] = df.infl.shift(2)
> df['l3infl'] = df.infl.shift(3)
> df['l4infl'] = df.infl.shift(4)
># looking at data: top two years
> print(df[['cpi', 'infl', 'l1infl', 'l2infl', 'l3infl', 'l4infl']].head(8))
    cpi infl llinfl l2infl l3infl l4infl
quarter
\begin{tabular}{rrrrrrr} 
1947Q1 & 21.700000 & NaN & NaN & NaN & NaN & NaN \\
1947Q2 & 22.010000 & 5.673854 & NaN & NaN & NaN & NaN \\
1947Q3 & 22.490000 & 8.629548 & 5.673854 & NaN & NaN & NaN \\
1947Q4 & 23.126667 & 11.166235 & 8.629548 & 5.673854 & NaN & NaN \\
1948Q1 & 23.616667 & 8.386530 & 11.166235 & 8.629548 & 5.673854 & NaN \\
1948Q2 & 23.993333 & 6.329335 & 8.386530 & 11.166235 & 8.629548 & 5.673854 \\
1948Q3 & 24.396667 & 6.668199 & 6.329335 & 8.386530 & 11.166235 & 8.629548 \\
1948Q4 & 24.173333 & -3.678565 & 6.668199 & 6.329335 & 8.386530 & 11.166235
\end{tabular}
> # looking at data: bottom two years
> print(df[['cpi', 'infl', 'l1infl', 'l2infl', 'l3infl', 'l4infl']].tail(8))
quarter
\begin{tabular}{lllllll} 
2021Q2 & 268.557667 & 7.249858 & 4.099796 & 2.775931 & 4.537298 & -3.863479 \\
2021Q3 & 272.887333 & 6.397339 & 7.249858 & 4.099796 & 2.775931 & 4.537298 \\
2021Q4 & 278.706667 & 8.440337 & 6.397339 & 7.249858 & 4.099796 & 2.775931 \\
2022Q1 & 284.893667 & 8.782463 & 8.440337 & 6.397339 & 7.249858 & 4.099796 \\
2022Q2 & 291.535667 & 9.218537 & 8.782463 & 8.440337 & 6.397339 & 7.249858 \\
2022Q3 & 295.495667 & 5.396727 & 9.218537 & 8.782463 & 8.440337 & 6.397339 \\
2022Q4 & 298.525000 & 4.079804 & 5.396727 & 9.218537 & 8.782463 & 8.440337 \\
2023Q1 & 301.330667 & 3.741816 & 4.079804 & 5.396727 & 9.218537 & 8.782463
\end{tabular}
```


Here I'm running an $\operatorname{AR}(4)$ estimation for infl

Python Code (output edited)

> \# fourth order autoregression:
> art = smf.ols('infl ~ l1infl + l2infl + l3infl + l4infl', data=df, missing='drop'). fit(use_t=False)
> print(ar4.summary())

OLS Regression Results

Dep. Variable:	infl	R -squared:	0.561
Model:	OLS	Adj. R-squared:	0.555
Method:	Least Squares	F-statistic:	94.22
No. Observations:	300	AIC:	1305.
Df Residuals:	295	BIC:	1324.

Df Model:
4
Covariance Type:
nonrobust

	coef	std err	z	$P>\|z\|$	[0.025	$0.975]$
Intercept	0.7529	0.195	3.857	0.000	0.370	1.136
l1infl	0.6197	0.057	10.790	0.000	0.507	0.732
l2infl	0.0069	0.065	0.106	0.915	-0.120	0.134
l3infl	0.3129	0.065	4.815	0.000	0.186	0.440
l4infl	-0.1670	0.057	-2.918	0.004	-0.279	-0.055

Again producing prediction and forecast
We estimated the following $\operatorname{AR}(4)$ model for inflation:

$$
\begin{array}{r}
\overline{\operatorname{infl}}_{t}=0.7529+0.6197 \cdot \mathrm{infl}_{t-1}+0.0069 \cdot \mathrm{infl}_{t-2}+ \\
0.3129 \cdot \mathrm{infl}_{t-3}-0.167 \cdot \mathrm{infl}_{t-4}
\end{array}
$$

In the data we observe

Python Code

```
> df.infl.tail(5)
quarter
2022Q1 8.782463
2022Q2 9.218537
2022Q3 5.396727
2022Q4 4.079804
2023Q1 3.741816
Freq: Q-DEC, Name: infl, dtype: float64
```

$$
\begin{aligned}
\widehat{\operatorname{infl}}_{2023: Q 1 \mid 2022: Q 4} & =0.7529+0.6197 \cdot(4.080)+0.0069 \cdot(5.3967) \\
& +0.3129 \cdot(9.2185)-0.167 \cdot(8.7825)=4.7365 \\
\widehat{\operatorname{infl}}_{2023: Q 2 \mid 2023: Q 1} & =0.7529+0.6197 \cdot(3.7418)+0.0069 \cdot(4.080) \\
& +0.3129 \cdot(5.3967)-0.167 \cdot(9.2185)=3.2490
\end{aligned}
$$

Forecasting

Still easy to produce predicted values and forecasts in Python Again use the post-regression predict function

It will produce a predicted value when in-sample
It will produce a forecast value when out-of-sample

Python Code

```
> # Prediction for 2023:Q1, and forecast for 2023:Q2
> newdata = {'l1infl' : [df.infl[-2], df.infl[-1]],
    'l2infl' : [df.infl[-3], df.infl[-2]],
    'l3infl' : [df.infl[-4], df.infl[-3]],
    'l4infl' : [df.infl[-5], df.infl[-4]]}
> ar4.predict(newdata)
0 4.736861
1 3.249507
```

Same values (sans rounding errors)

