
Time Series Regression and Forecasting

Juergen Meinecke

1 / 91

Roadmap

Time Series Terminology, Autocorrelation

Lags, First Differences, Growth Rates

2 / 91

Notation is now slightly different

Instead of an 𝑖-subscript, variables will have a 𝑡-subscript
(this is not a substantive change, just convention for time series)

The variable 𝑌𝑡 is the value of 𝑌 (for example real GDP) in period 𝑡
(for example year)

Data set: {𝑌1, … , 𝑌𝑇 } are 𝑇 observations on the time series 𝑌

We consider only consecutive, evenly-spaced observations
(for example, monthly, 1960 to 1999, no missing months)

Missing and unevenly spaced data do not pose a principal problem
and only introduce technical complications which we are happy to
ignore at this stage

3 / 91

Definition
The first lag of time series 𝑌𝑡 is 𝑌𝑡−1.

The 𝑗-th lag of time series 𝑌𝑡 is 𝑌𝑡−𝑗.

Definition
The first difference of time series 𝑌𝑡 is Δ𝑌𝑡 ∶= 𝑌𝑡 − 𝑌𝑡−1.

Definition
The first difference of the logarithm of time series 𝑌𝑡 is
Δ ln(𝑌𝑡) ∶= ln(𝑌𝑡) − ln(𝑌𝑡−1).

With these definitions it is easy to determine the percentage change
of a time series 𝑌𝑡 between the periods 𝑡 − 1 and 𝑡:
it is approximately 100 ⋅ Δ ln(𝑌𝑡)

4 / 91

Example: Quarterly CPI data for the US

I’m starting out with a time series on the price level in the US

Price level here is measured by the consumer price index (CPI)

The specific time series I’m using is labelled CPIAUCSL

It is the Consumer Price Index for All Urban Consumers provided by
the Federal Reserve Bank of St. Louis (FRED)

Let’s look at two recent measurements

• CPI in the fourth quarter of 2022 (2022:Q4) = 298.53

• CPI in the first quarter of 2023 (2023:Q1) = 301.33

Given this price level data, how do we back out inflation?

5 / 91

We study two approaches: exact and approximate

• CPI in the fourth quarter of 2022 (2022:Q4) = 298.53

• CPI in the first quarter of 2023 (2023:Q1) = 301.33

• Inflation via exact percentage change in CPI,
2022:Q4 to 2023:Q1

100 ⋅
301.33 − 298.53

298.53 = 0.94%

• Inflation via logarithmic approximation instead:
100 ⋅ (ln(301.33) − ln(298.53)) = 0.93%

The two approaches give slightly different results

6 / 91

It is common to extrapolate up the quarter-to-quarter change to an
annual rate

Quarter-to-quarter change at an annual rate

• Annualized inflation via exact percentage change in CPI

4 ⋅ 100 ⋅
301.33 − 298.53

298.53 = 3.75%

• Annualized inflation via logarithmic approximation instead:
4 ⋅ 100 ⋅ (ln(301.33) − ln(298.53)) = 3.73%

Answers the question: if the current quarter inflation continued
throughout the year, what would annual inflation be?

It’s a simple extrapolation really

7 / 91

Time Series Regression and Forecasting

Juergen Meinecke

8 / 91

Roadmap

Time Series Terminology, Autocorrelation

Autocorrelation

9 / 91

The correlation of a time series with its own lagged values is called
autocorrelation or serial correlation

Definition
The 𝑗-th autocovariance of a time series 𝑌𝑡 is the covariance
between 𝑌𝑡 and its 𝑗-th lag, 𝑌𝑡−𝑗: Cov(𝑌𝑡, 𝑌𝑡−𝑗).

The 𝑗-th autocorrelation of a time series 𝑌𝑡 is the correlation
between 𝑌𝑡 and its 𝑗-th lag, 𝑌𝑡−𝑗:

𝜌(𝑗) ∶=
Cov(𝑌𝑡, 𝑌𝑡−𝑗)

√Var (𝑌𝑡)Var (𝑌𝑡−𝑗)
.

10 / 91

The sample autocorrelation is the estimated autocorrelation

Definition
The 𝑗-th sample autocorrelation of a time series 𝑌𝑡 is the
correlation between 𝑌𝑡 and its 𝑗-th lag, 𝑌𝑡−𝑗:

�̂�(𝑗) ∶=
Cov(𝑌𝑡, 𝑌𝑡−𝑗)

Var (𝑌𝑡)
,

with Cov(𝑌𝑡, 𝑌𝑡−𝑗) ∶=
1
𝑇

𝑇

𝑡=𝑗+1

(𝑌𝑡 − �̄�𝑗+1,𝑇)(𝑌𝑡−𝑗 − �̄�1,𝑇−𝑗)

�̄�𝑝,𝑞 ∶=
1

𝑇 − 𝑗

𝑞

𝑡=𝑝

𝑌𝑡

Var (𝑌𝑡) ∶=
1
𝑇

𝑇

𝑡=1

(𝑌𝑡 − �̄�)2

11 / 91

Two little comments:

Although we only compare 𝑇 − 𝑗 pairs of the time series, the division
is by 𝑇 (this is conventional in time series analysis)

When computing the sample autocorrelation, we have implicitly
assumed that

• variances are constant over time

• covariances are constant over time
(only dependent on the lag length 𝑗)

This is justified by stationarity (which we will define next week)

12 / 91

Python example: quarterly CPI data for the US

Using the time series CPIAUCSL on quarterly CPI in the US,
I create the quarter-to-quarter inflation at an annualized rate

Python Code
> import pandas as pd
> import statsmodels.formula.api as smf
> import numpy as np
> # reading data from spreadsheet (downloaded from FRED):
> df = pd.read_csv('CPIAUCSL.csv')

> # creating quarterly index
> df['date'] = pd.to_datetime(df['DATE'], format='%Y-%m-%d')
> df.index = pd.DatetimeIndex(df.date, name='quarter').to_period('Q')

> # copy of CPI series with easy-to-access name:
> df['cpi'] = df.CPIAUCSL

> # taking logarithm of original series:
> df['logcpi'] = np.log(df.cpi)

> # creating annualised inflation via differences in logs:
> # (this is the 'first derivative' of 'cpi')
> df['infl'] = 400 * df.logcpi.diff()

> # creating quarter-on-quarter differences in inflation:
> # (this is the 'second derivative' of 'cpi')
> df['dinfl'] = df.infl.diff()

> df = df.drop(['DATE', 'CPIAUCSL'], axis=1)
13 / 91

Let’s take a look at the time series

Python Code
> # looking at data: top two years
> print(df.head(8))

date cpi logcpi infl dinfl
quarter
1947Q1 1947-01-01 21.700000 3.077312 NaN NaN
1947Q2 1947-04-01 22.010000 3.091497 5.673854 NaN
1947Q3 1947-07-01 22.490000 3.113071 8.629548 2.955694
1947Q4 1947-10-01 23.126667 3.140986 11.166235 2.536687
1948Q1 1948-01-01 23.616667 3.161953 8.386530 -2.779705
1948Q2 1948-04-01 23.993333 3.177776 6.329335 -2.057195
1948Q3 1948-07-01 24.396667 3.194447 6.668199 0.338864
1948Q4 1948-10-01 24.173333 3.185250 -3.678565 -10.346764

> # looking at data: bottom two years
> print(df.tail(8))

date cpi logcpi infl dinfl
quarter
2021Q2 2021-04-01 268.557667 5.593066 7.249858 3.150062
2021Q3 2021-07-01 272.887333 5.609059 6.397339 -0.852519
2021Q4 2021-10-01 278.706667 5.630160 8.440337 2.042998
2022Q1 2022-01-01 284.893667 5.652116 8.782463 0.342125
2022Q2 2022-04-01 291.535667 5.675162 9.218537 0.436075
2022Q3 2022-07-01 295.495667 5.688654 5.396727 -3.821810
2022Q4 2022-10-01 298.525000 5.698854 4.079804 -1.316924
2023Q1 2023-01-01 301.330667 5.708208 3.741816 -0.337987

14 / 91

Python Code
> fig, axs = plt.subplots(2, 1, figsize=(8,7))
> axs[0].plot(df.date, df.cpi)
> axs[0].set_ylabel('CPI')
> axs[1].plot(df.date, df.infl)
> axs[1].set_ylabel('Inflation (annualised, %)')
> fig.supxlabel('Time')
> fig.suptitle('Time Series Plots: CPIAUCSL and Inflation')
> plt.show()

15 / 91

Then I look at sample autocorrelations

Python Code
> from matplotlib import pyplot as plt
> from statsmodels.graphics.tsaplots import plot_acf

> # creating a 'stacked' plot of 3 rows
> fig, axs = plt.subplots(3, 1, figsize = (8, 14))

> # stacking them
> plot_acf(df.cpi, ax=axs[0], title = 'Sample Autocorrelation for CPIAUCSL')
> plot_acf(df.infl, missing='drop', ax=axs[1], title = 'Sample Autocorrelation for Inflation')
> plot_acf(df.dinfl, missing='drop', ax=axs[2], title = 'Sample Autocorrelation for D_Inflation')
> plt.show()

which creates the following plot …

16 / 91

Increasing degree of ‘differentiation’ reduces autocorrelation

Python Code Output

17 / 91

These sample autocorrelations show

• the original time series CPIAUCSL (price level as measured by
cpi) is very highly serially or auto-correlated

• infl (the first derivative of CPIAUCSL) is still highly serially
correlated

• dinfl (the first derivative if infl and second derivative of
CPIAUCSL) is not serially correlated anymore

Please bear this in mind, as it will have important ramifications when
we want to run auto-regressions using price level or inflation data

Detecting serial correlation by visual inspection is tricky:
both series are highly auto-correlated, yet only obvious for CPI

18 / 91

Time Series Regression and Forecasting

Juergen Meinecke

19 / 91

Roadmap

Autoregressive Models and Forecasting

The First Order Autoregressive (AR(1)) Model

20 / 91

A natural starting point for a forecasting model is to use past values
of 𝑌 (that is, 𝑌𝑡−1, 𝑌𝑡−2, …) to forecast 𝑌𝑡

An autoregression is a regression model in which 𝑌𝑡 is regressed
against its own lagged values

The number of lags used as regressors is called the order of the
autoregression

In a first order autoregression, 𝑌𝑡 is regressed against 𝑌𝑡−1

In a 𝑝-th order autoregression, 𝑌𝑡 is regressed against
𝑌𝑡−1, 𝑌𝑡−2, … , 𝑌𝑡−𝑝

21 / 91

The population AR(1) model is

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝑢𝑡

The coefficient 𝛽1 does NOT have a causal interpretation

If 𝛽1 = 0 then 𝑌𝑡−1 is not useful for forecasting 𝑌𝑡

The AR(1) model is estimated by OLS regression of 𝑌𝑡 on 𝑌𝑡−1

Testing 𝛽1 = 0 versus 𝛽1 ≠ 0 provides a test of the hypothesis that
𝑌𝑡−1 is not useful for forecasting 𝑌𝑡

22 / 91

Python Code
> # creating lagged inflation
> # (will be used as explanatory variable in AR(1) estimation)
> df['l1infl'] = df.infl.shift(1)

> # looking at data: top two years
> print(df[['cpi', 'infl', 'l1infl']].head(8))

cpi infl l1infl
quarter
1947Q1 21.700000 NaN NaN
1947Q2 22.010000 5.673854 NaN
1947Q3 22.490000 8.629548 5.673854
1947Q4 23.126667 11.166235 8.629548
1948Q1 23.616667 8.386530 11.166235
1948Q2 23.993333 6.329335 8.386530
1948Q3 24.396667 6.668199 6.329335
1948Q4 24.173333 -3.678565 6.668199

> # looking at data: bottom two years
> print(df[['cpi', 'infl', 'l1infl']].tail(8))

cpi infl l1infl
quarter
2021Q2 268.557667 7.249858 4.099796
2021Q3 272.887333 6.397339 7.249858
2021Q4 278.706667 8.440337 6.397339
2022Q1 284.893667 8.782463 8.440337
2022Q2 291.535667 9.218537 8.782463
2022Q3 295.495667 5.396727 9.218537
2022Q4 298.525000 4.079804 5.396727
2023Q1 301.330667 3.741816 4.079804

23 / 91

Here I’m running an AR(1) estimation for infl

Python Code (output edited)
> # first order autoregression:
> ar1 = smf.ols('infl ~ l1infl', data=df, missing='drop').fit(use_t=False)
> print(ar1.summary())

OLS Regression Results
==
Dep. Variable: infl R-squared: 0.524
Model: OLS Adj. R-squared: 0.523
Method: Least Squares F-statistic: 331.8
No. Observations: 303 AIC: 1344.
Df Residuals: 301 BIC: 1352.
Df Model: 1
Covariance Type: nonrobust
==

coef std err z P>|z| [0.025 0.975]
--
Intercept 0.9504 0.187 5.071 0.000 0.583 1.318
l1infl 0.7235 0.040 18.215 0.000 0.646 0.801
==

Notice: We don’t need to use heteroskedasticity-robust standard
errors because we are not really interested in statistical inference,
instead we want to use the coefficient estimates to produce forecasts

24 / 91

Forecasting

Our main objective when estimating autoregressions is to produce
forecasts

We are not interested in causal effects

As a consequence, we are not usually interested in the coefficient
estimates of AR models

We only use the coefficient estimates to create a forecast for the
dependent variable

External validity is paramount: the model estimated using historical
data must hold into the (near) future

But what do I mean by forecast?

25 / 91

Notation

• For an AR(1) model:
𝑌𝑇+1|𝑇 = 𝛽0 + 𝛽1𝑌𝑇

�̂�𝑇+1|𝑇 = �̂�0 + �̂�1𝑌𝑇

• 𝑌𝑇+1|𝑇 : forecast of 𝑌𝑇+1 based on 𝑌𝑇 , 𝑌𝑇−1, …
using the population coefficients (typically unknown)

• �̂�𝑇+1|𝑇 : forecast of 𝑌𝑇+1 based on 𝑌𝑇 , 𝑌𝑇−1, …
using the estimated coefficients

• Forecast errors are defined by 𝑌𝑇+1 − �̂�𝑇+1|𝑇

Do not confuse predicted values with forecasts

• Predicted values are “in-sample”

• Forecasts are “out-of-sample”
(looking into the future)

26 / 91

Let me explain the difference between predicted values and forecasts

Earlier we estimated the following AR(1) model for inflation:
infl𝑡 = 0.9504 + 0.7235 ⋅ infl𝑡−1

We used data from 1947:Q1–2023:Q1 for the estimation

This means:

• infl2023∶𝑄2|2023∶𝑄1 will be a forecast

• infl2023∶𝑄1|2022∶𝑄4 will be a predicted value

Let’s calculate both

These are simple common sense calculations

27 / 91

Calculation for the predicted value

In the data we observe infl2022∶𝑄4 = 4.0798

Resulting in the predicted value
infl2023∶𝑄1|2022∶𝑄4 = 0.9504 + 0.7235 ⋅ 4.0798 = 3.9021

In my data set I do observe infl2023∶𝑄1 = 3.7418 therefore the
infl2023∶𝑄1 − infl2023∶𝑄1|2022∶𝑄4 is the residual for Q1 2023

28 / 91

Calculation for the forecast

In the data we observe infl2023∶𝑄1 = 3.7418

Resulting in the forecast values
infl2023∶𝑄2|2023∶𝑄1 = 0.9504 + 0.7235 ⋅ 3.7418 = 3.6576

I could wait until July when infl2023∶𝑄2 is released and calculate the
forecast error infl2023∶𝑄2 − infl2023∶𝑄2|2023∶𝑄1

29 / 91

Easy to produce predicted values and forecasts in Python

Just use the post-regression predict function

It will produce a predicted value when in-sample

It will produce a forecast value when out-of-sample

Python Code
> # Prediction for 2023:Q1, and forecast for 2023:Q2
> newdata = 'l1infl' : [df.infl[-2], df.infl[-1]]
> ar1.predict(newdata)

0 3.902296
1 3.657747

30 / 91

Time Series Regression and Forecasting

Juergen Meinecke

31 / 91

Roadmap

Autoregressive Models and Forecasting

The 𝑝-th Order Autoregressive (AR(p)) Model

32 / 91

The population AR(p) model is

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 +⋯+ 𝛽𝑝𝑌𝑡−𝑝 + 𝑢𝑡

The coefficients do NOT have a causal interpretation

To test hypothesis that 𝑌𝑡−2, … , 𝑇𝑡−𝑝 do not add value over and above
𝑌𝑡−1, use an 𝐹-test

We will look at choosing 𝑝 using a suitable information criterion

33 / 91

Here I’m preparing an AR(4) estimation for infl
Python Code

> # creating more lags for inflation
> df['l2infl'] = df.infl.shift(2)
> df['l3infl'] = df.infl.shift(3)
> df['l4infl'] = df.infl.shift(4)

># looking at data: top two years
> print(df[['cpi', 'infl', 'l1infl', 'l2infl', 'l3infl', 'l4infl']].head(8))

cpi infl l1infl l2infl l3infl l4infl
quarter
1947Q1 21.700000 NaN NaN NaN NaN NaN
1947Q2 22.010000 5.673854 NaN NaN NaN NaN
1947Q3 22.490000 8.629548 5.673854 NaN NaN NaN
1947Q4 23.126667 11.166235 8.629548 5.673854 NaN NaN
1948Q1 23.616667 8.386530 11.166235 8.629548 5.673854 NaN
1948Q2 23.993333 6.329335 8.386530 11.166235 8.629548 5.673854
1948Q3 24.396667 6.668199 6.329335 8.386530 11.166235 8.629548
1948Q4 24.173333 -3.678565 6.668199 6.329335 8.386530 11.166235

> # looking at data: bottom two years
> print(df[['cpi', 'infl', 'l1infl', 'l2infl', 'l3infl', 'l4infl']].tail(8))

cpi infl l1infl l2infl l3infl l4infl
quarter
2021Q2 268.557667 7.249858 4.099796 2.775931 4.537298 -3.863479
2021Q3 272.887333 6.397339 7.249858 4.099796 2.775931 4.537298
2021Q4 278.706667 8.440337 6.397339 7.249858 4.099796 2.775931
2022Q1 284.893667 8.782463 8.440337 6.397339 7.249858 4.099796
2022Q2 291.535667 9.218537 8.782463 8.440337 6.397339 7.249858
2022Q3 295.495667 5.396727 9.218537 8.782463 8.440337 6.397339
2022Q4 298.525000 4.079804 5.396727 9.218537 8.782463 8.440337
2023Q1 301.330667 3.741816 4.079804 5.396727 9.218537 8.782463

34 / 91

Here I’m running an AR(4) estimation for infl

Python Code (output edited)
> # fourth order autoregression:
> ar4 = smf.ols('infl ~ l1infl + l2infl + l3infl + l4infl',

data=df, missing='drop').fit(use_t=False)
> print(ar4.summary())

OLS Regression Results
==
Dep. Variable: infl R-squared: 0.561
Model: OLS Adj. R-squared: 0.555
Method: Least Squares F-statistic: 94.22
No. Observations: 300 AIC: 1305.
Df Residuals: 295 BIC: 1324.
Df Model: 4
Covariance Type: nonrobust
==

coef std err z P>|z| [0.025 0.975]
--
Intercept 0.7529 0.195 3.857 0.000 0.370 1.136
l1infl 0.6197 0.057 10.790 0.000 0.507 0.732
l2infl 0.0069 0.065 0.106 0.915 -0.120 0.134
l3infl 0.3129 0.065 4.815 0.000 0.186 0.440
l4infl -0.1670 0.057 -2.918 0.004 -0.279 -0.055
==

35 / 91

Again producing prediction and forecast

We estimated the following AR(4) model for inflation:
infl𝑡 = 0.7529+0.6197 ⋅ infl𝑡−1 + 0.0069 ⋅ infl𝑡−2+

0.3129 ⋅ infl𝑡−3 − 0.167 ⋅ infl𝑡−4

In the data we observe
Python Code

> df.infl.tail(5)
quarter
2022Q1 8.782463
2022Q2 9.218537
2022Q3 5.396727
2022Q4 4.079804
2023Q1 3.741816
Freq: Q-DEC, Name: infl, dtype: float64

infl2023∶𝑄1|2022∶𝑄4 = 0.7529 + 0.6197 ⋅ (4.080) + 0.0069 ⋅ (5.3967)
+ 0.3129 ⋅ (9.2185) − 0.167 ⋅ (8.7825) = 4.7365

infl2023∶𝑄2|2023∶𝑄1 = 0.7529 + 0.6197 ⋅ (3.7418) + 0.0069 ⋅ (4.080)
+ 0.3129 ⋅ (5.3967) − 0.167 ⋅ (9.2185) = 3.2490

36 / 91

Forecasting

Still easy to produce predicted values and forecasts in Python

Again use the post-regression predict function

It will produce a predicted value when in-sample

It will produce a forecast value when out-of-sample

Python Code
> # Prediction for 2023:Q1, and forecast for 2023:Q2
> newdata = {'l1infl' : [df.infl[-2], df.infl[-1]],

'l2infl' : [df.infl[-3], df.infl[-2]],
'l3infl' : [df.infl[-4], df.infl[-3]],
'l4infl' : [df.infl[-5], df.infl[-4]]}

> ar4.predict(newdata)

0 4.736861
1 3.249507

Same values (sans rounding errors)

37 / 91

