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OLS estimators are statistics that vary with the underlying random
sample

Three natural questions to ask are:

• What is the expected value of the OLS estimator?

• What is the variance of the OLS estimator?

• What is the sampling distribution of the OLS estimator?

To answer these questions, we need to impose four assumptions

They are known as the OLS Assumptions
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Assumption (OLS Assumption 1)
The error term 𝑢𝑖 is conditionally mean independent (CMI) of 𝑋𝑖,
meaning:

𝐸[𝑢𝑖|𝑋𝑖] = 𝐸[𝑢𝑖] = 𝜇𝑢.

Note: many textbooks simply set 𝜇𝑢 = 0, which is without loss of
generality
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CMI restricts the expected value of the error terms

Although we do not observe the error terms 𝑢𝑖, and therefore we do
not know their distribution, we are willing to impose a restriction on
their expected values

The essential restriction in Assumption 1 is that the expected value
of 𝑢𝑖 is not a function of 𝑋𝑖

When we write that 𝐸[𝑢𝑖|𝑋𝑖] = 𝐸[𝑢𝑖], we are saying that 𝐸[𝑢𝑖|𝑋𝑖]

• is not dependent on 𝑋𝑖, and instead

• is constant with value 𝜇𝑢
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Assumption 1 says that 𝑋𝑖 is not informative for the mean of 𝑢𝑖

Benchmark for thinking about Assumption 1: a randomized
controlled experiment in which 𝑋𝑖 is randomly assigned to people
(students randomly assigned to different size classes; patients
randomly assigned to medical treatments)

If 𝑋𝑖 is assigned randomly then the error term 𝑢𝑖 must be statistically
independent of 𝑋𝑖, and thus 𝐸[𝑢𝑖|𝑋𝑖] = 𝐸[𝑢𝑖] seems plausible

With observational data, however, we will need to think hard about
whether 𝐸[𝑢𝑖|𝑋𝑖] = 𝐸[𝑢𝑖] is persuasive
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Assumption (OLS Assumption 2)
The sample data (𝑋𝑖, 𝑌𝑖), 𝑖 = 1,… , 𝑛, are independent and identically
distributed (i.i.d.) draws from the joint population distribution.
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Assumption 2 arises automatically if the entity 𝑖 is sampled by
simple random sampling:

• The entities are selected from the same population, so (𝑋𝑖, 𝑌𝑖)
are identically distributed for all 𝑖 = 1,…𝑛

• The entities are selected at random, so the values of (𝑋𝑖, 𝑌𝑖) for
different entities are independently distributed.

The main place we will encounter non-i.i.d. sampling is when data
are recorded over time for the same entity
(panel data and time series data)
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Assumption (OLS Assumption 3)
Large outliers in 𝑋𝑖 or 𝑌𝑖 are rare. Technically, both 𝑋𝑖 and 𝑌𝑖 have
finite fourth moments:

𝐸[𝑋4
𝑖 ] < ∞, 𝐸[𝑌4

𝑖 ] < ∞.
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A large outlier is an extreme value (positive or negative)

Large outliers for 𝑋𝑖 and 𝑌𝑖 can strongly influence OLS estimates
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In practice, outliers are often data glitches
(coding or recording problems)

Simple suggestions:

• literally look at your data spreadsheet

• are there any suspicious numbers?
(for example, somebody’s age was accidentally recorded as a
negative number)

• do a scatterplot to spot outliers

Technically, if 𝑋𝑖 and 𝑌𝑖 are bounded, then they will have finite
fourth moments
(Standardized test scores automatically satisfy this; student-teacher
ratio, family income, and many other real world variables satisfy this
too.)
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Assumption (OLS Assumption 4a)
The error term 𝑢𝑖 is homoskedastic, meaning:

Var (𝑢𝑖|𝑋𝑖) = 𝜎2
𝑢.
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Homoskedasticity restricts the variance of the error terms

Although we do not observe the error terms 𝑢𝑖, and therefore we do
not know their distribution, we are willing to impose a restriction on
their variances

The essential restriction in Assumption 4a is that the variance of 𝑢𝑖
is not a function of 𝑋𝑖

When we write that Var (𝑢𝑖|𝑋𝑖) = 𝜎2
𝑢, we are saying that Var (𝑢𝑖|𝑋𝑖)

• is not dependent on 𝑋𝑖, and instead

• is constant with value 𝜎2
𝑢

Homoskedasticity is not absolutely essential as an assumption, but
it makes the derivation of the variance of the OLS estimators 𝛽̂0 and
𝛽̂1 easier
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OLS estimators are statistics that vary with the underlying random
sample

Three natural questions to ask are:

• What is the expected value of the OLS estimator?

• What is the variance of the OLS estimator?

• What is the sampling distribution of the OLS estimator?

Using the four OLS assumptions, we will answer these questions now
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In what follows, we will only focus on the coefficient 𝛽1 and its OLS
estimator 𝛽̂1
We will ignore the coefficient 𝛽0 and its OLS estimator 𝛽̂0
Main reason: the math is tedious and focusing our attention on only
one coefficient is sufficient

Doing the math for the other coefficient would not be substantially
more difficult
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Some preliminary algebra before we derive the sampling distribution
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖

𝑌̄ = 𝛽0 + 𝛽1𝑋̄ + 𝑢̄,

So therefore,
𝑌𝑖 − 𝑌̄ = 𝛽1(𝑋𝑖 − 𝑋̄) + (𝑢𝑖 − 𝑢̄)

Thus,

𝛽̂1 =
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2

=
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)[𝛽1(𝑋𝑖 − 𝑋̄) + (𝑢𝑖 − 𝑢̄)]
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2

= 𝛽1
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2

+
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)(𝑢𝑖 − 𝑢̄)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2
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Copying and pasting the last equation and simplifying…

𝛽̂1 = 𝛽1
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2

+
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)(𝑢𝑖 − 𝑢̄)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2

and therefore

𝛽̂1 = 𝛽1 +
1
𝑛
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)(𝑢𝑖 − 𝑢̄)
1
𝑛
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2

Intuitively, what are the numerator and the denominator measuring?

• numerator: sample covariance between 𝑋𝑖 and 𝑢𝑖

• denominator: sample variance of 𝑋𝑖

The difference between 𝛽̂1 and 𝛽1 is therefore equal to the ratio of
the sample covariance between 𝑋𝑖 and 𝑢𝑖 and the sample variance
of 𝑋𝑖
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But we can simplify even further!

Rewrite the numerator
𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄)(𝑢𝑖 − 𝑢̄) =
𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄)𝑢𝑖 −
⎛
⎜
⎜
⎝

𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄)
⎞
⎟
⎟
⎠
𝑢̄

=
𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄)𝑢𝑖 −
⎡
⎢
⎢
⎣

⎛
⎜
⎜
⎝

𝑛
􏾜
𝑖=1

𝑋𝑖

⎞
⎟
⎟
⎠
− 𝑛𝑋̄

⎤
⎥
⎥
⎦
𝑢̄

=
𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄)𝑢𝑖

Substituting back the numerator results in

𝛽̂1 = 𝛽1 +
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)𝑢𝑖
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2

We can now turn to the derivations of E[𝛽̂1|𝑋𝑖] and Var (𝛽̂1|𝑋𝑖)
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E[𝛽̂1|𝑋𝑖] = E
⎡
⎢
⎣
𝛽1 +

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)𝑢𝑖

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2

|𝑋𝑖
⎤
⎥
⎦

= 𝛽1 + 1
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2
E
⎡
⎢
⎢
⎣

𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄) ⋅ 𝑢𝑖|𝑋𝑖

⎤
⎥
⎥
⎦

= 𝛽1 + 1
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2
𝑛
􏾜
𝑖=1
E 􏿮(𝑋𝑖 − 𝑋̄) ⋅ 𝑢𝑖|𝑋𝑖􏿱

= 𝛽1 + 1
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2
𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄) ⋅ E 􏿮𝑢𝑖|𝑋𝑖􏿱

= 𝛽1 + 1
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2
𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄) ⋅ 𝜇𝑢

= 𝛽1 + 𝜇𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2
𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄)

= 𝛽1
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The first equality holds by definition

The second equality holds by property (2) of the expected value and
because the denominator can be treated as a constant
(because the expected value is conditional on 𝑋𝑖)

The third equality holds by property (3) of the expected value

The fourth equality holds because the factor 𝑋𝑖 − 𝑋̄ can be treated
as a constant

The fifth equality holds by Assumption 1

The final equality follows because ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄) = 0

Overall, this means that 𝛽̂1 is an unbiased estimator of 𝛽1
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Deriving the variance of 𝛽̂1 is equally awkward, but we need to do it

Recall our earlier expression for 𝛽̂1:

𝛽̂1 = 𝛽1 +
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)𝑢𝑖
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2

Now instead of E[𝛽̂1|𝑋𝑖] we are interested in Var(𝛽̂1|𝑋𝑖)

Plugging in and solving, step by step, we get
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Var(𝛽̂1|𝑋𝑖) = Var
⎛
⎜
⎝
𝛽1 +

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)𝑢𝑖

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2

|𝑋𝑖
⎞
⎟
⎠

= Var
⎛
⎜
⎝

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)𝑢𝑖

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2

|𝑋𝑖
⎞
⎟
⎠

= 1

􏿴∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2􏿷

2 Var
⎛
⎜
⎜
⎝

𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄)𝑢𝑖|𝑋𝑖

⎞
⎟
⎟
⎠

= 1

􏿴∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2􏿷

2

𝑛
􏾜
𝑖=1
Var 􏿵(𝑋𝑖 − 𝑋̄)𝑢𝑖|𝑋𝑖􏿸

= 1

􏿴∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2􏿷

2

𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄)2Var(𝑢𝑖|𝑋𝑖)

= 1

􏿴∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2􏿷

2

𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄)2𝜎2
𝑢

= 𝜎2
𝑢

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2 85 / 151



The first equality holds by definition

The second equality holds by property (2) of the variance

The third equality holds by property (2) of the variance

The fourth equality holds by property (3) of the variance
(all covariances are zero because of i.i.d. sampling)

The fifth equality holds because the factor 𝑋𝑖 − 𝑋̄ can be treated as a
constant

The sixth equality holds by Assumption 4a

The final equality results from algebraic simplification
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Recall that the sample variance of 𝑋𝑖 is 𝑠2𝑋 ∶= 1
𝑛
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2

Then
Var(𝛽̂1|𝑋𝑖) =

𝜎2
𝑢

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2

=
1
𝑛𝜎

2
𝑢

1
𝑛
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)2

= 1
𝑛
𝜎2
𝑢

𝑠2𝑋

This means that the conditional variance of 𝛽̂1 is:

• proportional to the population variance of the error term 𝑢𝑖

• inversely proportional to the variance of the regressor 𝑋𝑖 and
the sample size 𝑛

Now there is only one additional step to turn this into a result that
will be useful for applying the central limit theorem
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Instead of the sample variance of 𝑋𝑖, plug in its asymptotic
approximation

𝑠2𝑋 ≃ 𝜎2
𝑋

This means, that for large samples the sample variance of 𝑋𝑖 is
almost equal to the population variance of 𝑋𝑖

With this approximation

Var(𝛽̂1|𝑋𝑖) ≃
1
𝑛
𝜎2
𝑢

𝜎2
𝑋
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Summarizing the sampling distribution thus far

We have restricted attention to 𝛽̂1
(dealing with 𝛽̂0 is not more difficult)

We have learned that
E 􏿮𝛽̂1|𝑋𝑖􏿱 = 𝛽1

Var 􏿴𝛽̂1|𝑋𝑖􏿷 ≃ 1
𝑛
𝜎2
𝑢

𝜎2
𝑋

Putting things together, the OLS estimator has a distribution

𝛽̂1
approx.∼ 𝑃 􏿶𝛽1,

1
𝑛
𝜎2
𝑢

𝜎2
𝑋
􏿹 ,

where 𝑃 is a placeholder for some unknown distribution
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The central limit theorem tells us what 𝑃 is
Theorem
The asymptotic distribution of the OLS estimator 𝛽̂1 under OLS
Assumptions 1,2,3, and 4a is

𝛽̂1
𝑎𝑝𝑝𝑟𝑜𝑥.∼ N 􏿶𝛽1,

1
𝑛
𝜎2
𝑢

𝜎2
𝑋
􏿹 .

A similar result holds for 𝛽̂0
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A quick corollary is

Corollary

√𝑛𝛽̂1 − 𝛽1
𝜎𝑢/𝜎𝑋

𝑎𝑝𝑝𝑟𝑜𝑥.∼ 𝑁(0, 1)

This is entirely analogous to the sample average in univariate
statistics:

√𝑛𝑌̄ − 𝜇𝑌
𝜎𝑌

approx.∼ 𝑁(0, 1)
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The central limit theorem led to the following sampling distribution
for the OLS estimator of the slope coefficient 𝛽1:

𝛽̂1
𝑎𝑝𝑝𝑟𝑜𝑥.∼ N 􏿶𝛽1,

1
𝑛
𝜎2
𝑢

𝜎2
𝑋
􏿹 .

With this result we can

• derive confidence intervals for 𝛽1,
• propose hypothesis tests for 𝛽1
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Notice that the approximate variance of 𝛽̂1 is

Var (𝛽̂1) =
1
𝑛

𝜎2𝑢
𝜎2𝑋

Therefore, std(𝛽̂1) =
1
√𝑛

𝜎𝑢
𝜎𝑋

By the virtue of the normal distribution, we should therefore
consider the range 𝛽̂1 ± 1.96 ⋅ std(𝛽̂1)

This, of course, results in the confidence interval

𝐶𝐼(𝛽1) ∶= 􏿰𝛽̂1 − 1.96 ⋅ 𝜎𝑢

√𝑛𝜎𝑋
, 𝛽̂1 + 1.96 ⋅ 𝜎𝑢

√𝑛𝜎𝑋
􏿳

Only problem: we do not know 𝜎𝑢 and 𝜎𝑋 (why?)
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But can estimate them easily instead:

• 𝜎𝑢 is estimated by 𝑠𝑢
• 𝜎𝑋 is estimated by 𝑠𝑋

Do you remember the definition of 𝑠𝑢 and 𝑠𝑋?

It should be obvious to you that

𝑠𝑢 ∶=
􏽭
⃓
⃓
⎷

1
𝑛

𝑛
􏾜
𝑖=1

𝑢̂2
𝑖 𝑠𝑋 ∶=

􏽭
⃓
⃓
⎷

1
𝑛

𝑛
􏾜
𝑖=1

(𝑋𝑖 − 𝑋̄)2
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An operational version of the confidence interval therefore is given
by

𝐶𝐼(𝛽1) ∶= 􏿰𝛽̂1 − 1.96 ⋅ 𝑠𝑢
√𝑛𝑠𝑋

, 𝛽̂1 + 1.96 ⋅ 𝑠𝑢
√𝑛𝑠𝑋

􏿳

The ratio 𝑠𝑢/(√𝑛𝑠𝑋 ) has a special name

Definition
The standard error of 𝛽̂1 is defined as 𝑆𝐸(𝛽̂1) ∶= 𝑠𝑢/(√𝑛𝑠𝑋 ).
It is the estimated standard deviation of the OLS estimator 𝛽̂1.
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Expressing the confidence interval for the population coefficient 𝛽1
in terms of the standard error:

𝐶𝐼(𝛽1) ∶= 􏿮𝛽̂1 − 1.96 ⋅ SE(𝛽̂1), 𝛽̂1 + 1.96 ⋅ SE(𝛽̂1)􏿱

This looks very similar to the confidence interval for the population
mean from univariate statistics:

𝐶𝐼(𝜇𝑌 ) ∶= [𝑌̄ − 1.96 ⋅ SE(𝑌̄), 𝑌̄ + 1.96 ⋅ SE(𝑌̄)]

Confidence intervals are always constructed that way:
Estimated population parameter plus/minus 1.96 times standard
error
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When you run a regression in Python, it will compute and display

• coefficient estimates 𝛽̂0 and 𝛽̂1
• standard errors for both 𝛽̂0 and 𝛽̂1
• confidence intervals for 𝛽0 and 𝛽1
• 𝑡-statistics
• 𝑝-values

Let’s take a look…
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Student-teacher ratio example

Python Code (output edited)
> import pandas as pd
> import statsmodels.formula.api as smf
> df = pd.read_csv('caschool.csv')
> formula = 'testscr ~ str'
> model1 = smf.ols(formula, data=df, missing='drop')
> reg1 = model1.fit(use_t=False)
> print(reg1.summary())

OLS Regression Results
==============================================================================
Dep. Variable: testscr R-squared: 0.051
Model: OLS Adj. R-squared: 0.049
Method: Least Squares F-statistic: 22.58
No. Observations: 420
Covariance Type: nonrobust
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 698.9330 9.467 73.825 0.000 680.377 717.489
str -2.2798 0.480 -4.751 0.000 -3.220 -1.339
==============================================================================
Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
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Python computes that 𝛽̂0 = 698.93 and 𝛽̂1 = −2.28

These are the estimates for the unknown population coefficients 𝛽0
and 𝛽1
We care in particular about 𝛽1
If STR goes up by one then TestScore is expected to go down by 2.28

But is this number statistically different from zero?

The answer depends on how precise our estimate 𝛽̂1 is

Luckily, Python provides the standard error: 0.48
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Going 1.96 times the standard error to the left and right of the
coefficient estimate gives us the 95% confidence interval

We could easily calculate this ourselves, but again Python already
does it for us

Python tells us that the confidence interval for 𝛽1 is [−3.22, −1.34]

Because this confidence interval does not contain zero, we conclude
that the the true population parameter 𝛽1 is likely not equal to zero
(at a 95% confidence level)
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Alternatively, we could have used the p-value to arrive at the same
conclusion

Python even tells us the p-value: it is 0.000 which means a value
less than 0.050 which is enough information to reject the null
hypothesis that 𝛽1 = 0 at a 95% significance level

Remember: the p-value is the smallest significance level at which
the null hypothesis can be rejected

There is another piece of information that Python calculates:
the t-statistic

In the sample regression output above, that number equals −4.75 for
STR

What does this mean?
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Definition
The t-statistic is defined as

𝑡 ∶= 𝛽̂1 − 𝛽𝐻0
1

SE(𝛽̂1)
,

where 𝛽𝐻0
1 is the value of the population parameter 𝛽1 under the

null hypothesis.

In the previous few slides we have considered the null hypothesis
𝐻0 ∶ 𝛽1 = 0

Therefore, the t-statistic would translate to 𝛽̂1
SE(𝛽̂1)

What is the approximate distribution of this expression?
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Can you see that
𝛽̂1

SE(𝛽̂1)
𝑎𝑝𝑝𝑟𝑜𝑥.∼ 𝑁(0, 1)?

In other words, the t-statistic has an approximate standard normal
distribution under the null hypothesis 𝐻0 ∶ 𝛽1 = 0

When we know the value of the t-statistic, all we need to do is check
whether it is smaller than -1.96 or larger than 1.96

In the current example, the t-stat is −4.75

We therefore conclude that it is sufficiently far away from zero; the
true population parameter is not equal to zero
(at a 95% confidence level)
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In summary, there are three equivalent ways of testing the
hypothesis 𝐻0 ∶ 𝛽1 = 0, via the

• t-statistic

• p-value

• confidence interval

Each of these are constructed as functions of 𝛽̂1 and SE(𝛽̂1)

Each of these just presents that information in a different way

You can choose whichever method you prefer, they will all give you
the same answer regarding the significance of 𝛽1
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