Simple Regression Model

Juergen Meinecke

Roadmap

Ordinary Least Squares Estimation Specification of the Model

The Population Linear Regression Model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}, \quad i=1, \ldots, n
$$

We have n observations, $\left(X_{i}, Y_{i}\right), i=1, . ., n$

- Y_{i} is the dependent variable
- X_{i} is the independent variable or explanatory variable or regressor
- u_{i} is the error term
- β_{0} is the intercept
- β_{1} is the slope

The error term u_{i} captures all factors that could explain Y_{i} over and above the explanatory variable X_{i}

Our main interest is to learn about the expected effect on Y of a unit change in X

This is often referred to as the causal effect of X on Y
Graphically, this causal effect is represented by the slope of the line
Technically, we need to study the question:
Given a scatterplot between two variables X and Y, how can we fit a line?

Fitting a line boils down to finding (estimating) the parameters β_{0} (intercept) and β_{1} (slope)

Statistical, or econometric, inference about β_{0} and β_{1} entails:

- Estimation

How do we estimate β_{0} and β_{1} ?
Answer: ordinary least squares (OLS)

- Hypothesis testing

How to test if β_{0} or β_{1} are zero (or some other value)?

- Confidence intervals

How to construct a confidence intervals?

Looking again at the classroom size example: the PRF is

$$
\text { TestScore }=\beta_{0}+\beta_{1} \text { STR }
$$

where

$$
\begin{aligned}
\beta_{1} & =\text { slope of PRF } \\
& =\frac{\partial T e s t S c o r e}{\partial S T R} \\
& =\text { change in TestScore for a unit change in STR }
\end{aligned}
$$

The parameters β_{0} and β_{1} are unobserved population parameters
Goal: statistical inference about β_{0} and β_{1}
(Our priority is learning about β_{1})

Given a scatterplot of the data ...

...how does the estimated PRF look like?

Answer (after applying OLS estimation):

Estimated intercept $\hat{\beta}_{0}=698.9$
Estimated slope $\hat{\beta}_{1}=-2.28$
Estimated PRF: $\overline{\text { TestScore }}=698.9-2.28 \cdot$ STR

Interpretation of the estimated slope and intercept

$$
\overline{\text { TestScore }}=698.9-2.28 \cdot \text { STR }
$$

Districts with one more student per teacher on average have test scores that are 2.28 points lower
That is, $\frac{\partial \overline{\text { TestScore }}}{\partial S T R}=-2.28$
The intercept (taken literally) means that districts with zero students per teacher would have a (predicted) test score of 698.9
(This interpretation of the intercept makes no sense - it extrapolates the line outside the range of the data - here, the intercept is not economically meaningful)

Simple Regression Model

Juergen Meinecke

Roadmap

Ordinary Least Squares Estimation Definition of OLS Estimator

Let's tentatively assume we know how to estimate β_{0} and β_{1}
By convention, their estimators will be denoted $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$
This results in the following estimated PRF

$$
\widehat{\mathrm{PRF}}:=\hat{\beta}_{0}+\hat{\beta}_{1} X
$$

It should be obvious that PRF $\neq \widehat{\text { PRF }}$

PRF and Estimated PRF

So at the end of the day, this is the picture we will actually see

Scatterplot and Estimated PRF

Before we proceed to derive the estimators $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, we need to clarify some terminology

PRF

(Again: we only get to see the picture on the right side)

Definition

The predicted value of Y_{i} is given by $\hat{Y}_{i}:=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$.
The predicted value is the estimated PRF.
Difference between errors and residuals

Definition

The error is given by $u_{i}:=Y_{i}-\beta_{0}-\beta_{1} X_{i}$.
It is the difference between Y_{i} and the PRF.

Definition

The residual is given by $\hat{u}_{i}:=Y_{i}-\hat{Y}_{i}$.
It is the difference between Y_{i} and the predicted value.

Corollary

$$
Y_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}+\hat{u}_{i}=\hat{Y}_{i}+\hat{u}_{i} .
$$

Corollary

$\beta_{0}+\beta_{1} X_{i}+u_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}+\hat{u}_{i}$.
By the way, it should be clear that in general

$$
\beta_{0} \neq \hat{\beta}_{0} \quad \beta_{1} \neq \hat{\beta}_{1} \quad u_{i} \neq \hat{u}_{i}
$$

Where do $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ come from?
Least squares criterion for estimators:

- minimize (in some sense) the difference between the estimated population regression function and the observations Y_{i}
- but some error terms will be above the line and some will be below, won't they cancel each other out?
- trick: look at the squared residual instead

$$
\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- Now, choose b_{0} and b_{1} such that the sum of squared residuals is minimized

$$
\operatorname{SSR}\left(b_{0}, b_{1}\right):=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

The set of solutions b_{0} and b_{1} that minimize SSR are denoted $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$

Nice fact:
turns out, there is only one unique minimizer to the least squares problem

Nice fact:
it is reasonably easy to compute that minimizer
We'll turn to the computation now...

Definition

The Ordinary Least Squares (OLS) estimators are defined by

$$
\hat{\beta}_{0}, \hat{\beta}_{1}:=\underset{b_{0}, b_{1}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

In words

- we look at the rhs as a function in b_{0} and b_{1}
- that function happens to be quadratic
- we find the values of b_{0} and b_{1} that minimize that function
- the values that minimize that function are called solution
- we give the solution a specific name: $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$

Geometry of the minimization problem

The single point at the very bottom (the unique minimum) is denoted ($\hat{\beta}_{0}, \hat{\beta}_{1}$)

Simple Regression Model

Juergen Meinecke

Roadmap

Ordinary Least Squares Estimation Derivation of OLS Estimator

The mathematics of finding the solution
The basic approach is multivariate calculus which you know from high school or EMET1001 or both
First step: differentiate $\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}$

$$
\begin{aligned}
& \frac{\partial S S R}{\partial b_{0}}=-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
& \frac{\partial S S R}{\partial b_{1}}=-2 \sum_{i=1}^{n} X_{i} \cdot\left(Y_{i}-b_{0}-b_{1} X_{i}\right)
\end{aligned}
$$

This is a set in two linear equations and two unknowns
(b_{0} and b_{1})

Second step: set derivative to zero (at this step, $b_{0}=\hat{\beta}_{0}$ and $b_{1}=\hat{\beta}_{1}$)

$$
\begin{aligned}
& 0=-2 \sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right) \\
& 0=-2 \sum_{i=1}^{n} X_{i} \cdot\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)
\end{aligned}
$$

These two equations are the first order necessary condtions (foc) for a minimum

Third step: using the first foc, solve for $\hat{\beta}_{0}$ as function of $\hat{\beta}_{1}$

$$
\begin{aligned}
0 & =-2 \sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right) \\
& =\sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right) \\
& =\sum_{i=1}^{n} Y_{i}-\sum_{i=1}^{n} \hat{\beta}_{0}-\sum_{i=1}^{n} \hat{\beta}_{1} X_{i} \\
& =\sum_{i=1}^{n} Y_{i}-n \hat{\beta}_{0}-\hat{\beta}_{1} \sum_{i=1}^{n} X_{i}
\end{aligned}
$$

which is equivalent to

$$
n \hat{\beta}_{0}=\sum_{i=1}^{n} Y_{i}-\hat{\beta}_{1} \sum_{i=1}^{n} X_{i}
$$

$$
n \hat{\beta}_{0}=\sum_{i=1}^{n} Y_{i}-\hat{\beta}_{1} \sum_{i=1}^{n} X_{i}
$$

and

$$
\begin{aligned}
\hat{\beta}_{0} & =\frac{\sum_{i=1}^{n} Y_{i}}{n}-\hat{\beta}_{1} \frac{\sum_{i=1}^{n} X_{i}}{n} \\
& =\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{aligned}
$$

This is an elegant result:
$\hat{\beta}_{0}$ is the sample average of Y minus $\hat{\beta}_{1}$ times the sample average of X

Fourth step: substitute $\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}$ into the second first order condition from the second step and solve for $\hat{\beta}_{1}$

$$
\begin{aligned}
0 & =-2 \sum_{i=1}^{n} X_{i} \cdot\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right) \\
& =\sum_{i=1}^{n} X_{i} \cdot\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right) \\
& =\sum_{i=1}^{n} X_{i} \cdot\left(Y_{i}-\bar{Y}+\hat{\beta}_{1} \bar{X}-\hat{\beta}_{1} X_{i}\right) \\
& =\sum_{i=1}^{n} X_{i} \cdot\left(Y_{i}-\bar{Y}-\hat{\beta}_{1}\left(X_{i}-\bar{X}\right)\right) \\
& =\sum_{i=1}^{n} X_{i} Y_{i}-\bar{Y} X_{i}-\hat{\beta}_{1}\left(X_{i}^{2}-\bar{X} X_{i}\right) \\
& =\sum_{i=1}^{n} X_{i} Y_{i}-\bar{Y} \sum_{i=1}^{n} X_{i}-\hat{\beta}_{1} \sum_{i=1}^{n}\left(X_{i}^{2}-\bar{X} X_{i}\right)
\end{aligned}
$$

Continuing...

$$
\begin{aligned}
0 & =\sum_{i=1}^{n} X_{i} Y_{i}-\bar{Y} \sum_{i=1}^{n} X_{i}-\hat{\beta}_{1} \sum_{i=1}^{n}\left(X_{i}^{2}-\bar{X} X_{i}\right) \\
& =\left(\sum_{i=1}^{n} X_{i} Y_{i}\right)-n \bar{X} \bar{Y}-\hat{\beta}_{1} \sum_{i=1}^{n}\left(X_{i}^{2}-\bar{X} X_{i}\right),
\end{aligned}
$$

where we use $\sum_{i=1}^{n} X_{i}=n \bar{X} \quad$ (we'll prove this in the workshop) Rearranging

$$
\hat{\beta}_{1} \sum_{i=1}^{n}\left(X_{i}^{2}-\bar{X} X_{i}\right)=\left(\sum_{i=1}^{n} X_{i} Y_{i}\right)-n \bar{X} \bar{Y}
$$

where the Ihs can be simplified

$$
\sum_{i=1}^{n}\left(X_{i}^{2}-\bar{X} X_{i}\right)=\sum_{i=1}^{n} X_{i}^{2}-\bar{X} \sum_{i=1}^{n} X_{i}=\left(\sum_{i=1}^{n} X_{i}^{2}\right)-n \bar{X}^{2}
$$

Isolating $\hat{\beta}_{1}$ on the left results in...

$$
\hat{\beta}_{1}=\frac{\left(\sum_{i=1}^{n} X_{i} Y_{i}\right)-n \bar{X} \bar{Y}}{\left(\sum_{i=1}^{n} X_{i}^{2}\right)-n \bar{X}^{2}}
$$

Now we exploit a property of the summation operator: (we'll prove this in the workshop)

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)=\left(\sum_{i=1}^{n} X_{i} Y_{i}\right)-n \bar{X} \bar{Y}
$$

Now we use this property to simplify the result for $\hat{\beta}_{1}$:

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{\left(\sum_{i=1}^{n} X_{i} Y_{i}\right)-n \bar{X} \bar{Y}}{\left(\sum_{i=1}^{n} X_{i}^{2}\right)-n \bar{X}^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
\end{aligned}
$$

What is the rhs equal to?

With a tiny modification we see that

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
\end{aligned}
$$

- denominator: sample variance of X_{i}
- numerator: sample covariance between X_{i} and Y_{i}

The OLS estimator of the slope is equal to the ratio of sample covariance and sample variance!

In summary, we have now derived the OLS estimators of β_{0} and β_{1}, they are

$$
\begin{aligned}
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X} \\
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
\end{aligned}
$$

The OLS estimators are functions of the sample data only
Given the sample data $\left(X_{i}, Y_{i}\right)$ we can first compute the rhs for $\hat{\beta}_{1}$ and then we can compute the rhs for $\hat{\beta}_{0}$

Computer programs such as Python easily calculate the rhs for you

