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The Population Linear Regression Model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖, 𝑖 = 1,… , 𝑛

We have n observations, (𝑋𝑖, 𝑌𝑖), 𝑖 = 1, .., 𝑛

• 𝑌𝑖 is the dependent variable

• 𝑋𝑖 is the independent variable or explanatory variable or
regressor

• 𝑢𝑖 is the error term

• 𝛽0 is the intercept
• 𝛽1 is the slope

The error term 𝑢𝑖 captures all factors that could explain 𝑌𝑖
over and above the explanatory variable 𝑋𝑖
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Our main interest is to learn about the expected effect on Y of a unit
change in X

This is often referred to as the causal effect of X on Y

Graphically, this causal effect is represented by the slope of the line

Technically, we need to study the question:
Given a scatterplot between two variables X and Y, how can we fit a
line?
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Fitting a line boils down to finding (estimating) the parameters 𝛽0
(intercept) and 𝛽1 (slope)

Statistical, or econometric, inference about 𝛽0 and 𝛽1 entails:

• Estimation
How do we estimate 𝛽0 and 𝛽1?
Answer: ordinary least squares (OLS)

• Hypothesis testing
How to test if 𝛽0 or 𝛽1 are zero (or some other value)?

• Confidence intervals
How to construct a confidence intervals?
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Looking again at the classroom size example: the PRF is
𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽1𝑆𝑇𝑅

where
𝛽1 = slope of PRF

= 𝜕𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒
𝜕𝑆𝑇𝑅

= change in 𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 for a unit change in 𝑆𝑇𝑅

The parameters 𝛽0 and 𝛽1 are unobserved population parameters

Goal: statistical inference about 𝛽0 and 𝛽1
(Our priority is learning about 𝛽1)
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Given a scatterplot of the data …

…how does the estimated PRF look like?
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Answer (after applying OLS estimation):

Estimated intercept �̂�0 = 698.9

Estimated slope �̂�1 = −2.28

Estimated PRF: 𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 698.9 − 2.28 ⋅ 𝑆𝑇𝑅
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Interpretation of the estimated slope and intercept
𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 698.9 − 2.28 ⋅ 𝑆𝑇𝑅

Districts with one more student per teacher on average have test
scores that are 2.28 points lower

That is, 𝜕 𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒
𝜕𝑆𝑇𝑅 = −2.28

The intercept (taken literally) means that districts with zero students
per teacher would have a (predicted) test score of 698.9

(This interpretation of the intercept makes no sense – it extrapolates
the line outside the range of the data – here, the intercept is not
economically meaningful)

38 / 151



Simple Regression Model

Juergen Meinecke

39 / 151



Roadmap

Ordinary Least Squares Estimation

Definition of OLS Estimator

40 / 151



Let’s tentatively assume we know how to estimate 𝛽0 and 𝛽1
By convention, their estimators will be denoted �̂�0 and �̂�1
This results in the following estimated PRF

PRF ∶= �̂�0 + �̂�1𝑋
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It should be obvious that PRF ≠ PRF
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So at the end of the day, this is the picture we will actually see
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Before we proceed to derive the estimators �̂�0 and �̂�1, we need to
clarify some terminology

(Again: we only get to see the picture on the right side)
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Definition
The predicted value of 𝑌𝑖 is given by �̂�𝑖 ∶= �̂�0 + �̂�1𝑋𝑖.
The predicted value is the estimated PRF.

Difference between errors and residuals

Definition
The error is given by 𝑢𝑖 ∶= 𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖.
It is the difference between 𝑌𝑖 and the PRF.

Definition
The residual is given by �̂�𝑖 ∶= 𝑌𝑖 − �̂�𝑖.
It is the difference between 𝑌𝑖 and the predicted value.
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Corollary
𝑌𝑖 = �̂�0 + �̂�1𝑋𝑖 + �̂�𝑖 = �̂�𝑖 + �̂�𝑖.

Corollary
𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖 = �̂�0 + �̂�1𝑋𝑖 + �̂�𝑖.

By the way, it should be clear that in general
𝛽0 ≠ �̂�0 𝛽1 ≠ �̂�1 𝑢𝑖 ≠ �̂�𝑖
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Where do �̂�0 and �̂�1 come from?

Least squares criterion for estimators:

• minimize (in some sense) the difference between the estimated
population regression function and the observations 𝑌𝑖

• but some error terms will be above the line and some will be
below, won’t they cancel each other out?

• trick: look at the squared residual instead
(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2

• Now, choose 𝑏0 and 𝑏1 such that the sum of squared residuals is
minimized

𝑆𝑆𝑅(𝑏0, 𝑏1) ∶= ∑𝑛
𝑖=1(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2
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The set of solutions 𝑏0 and 𝑏1 that minimize 𝑆𝑆𝑅 are denoted �̂�0 and
�̂�1
Nice fact:
turns out, there is only one unique minimizer to the least squares
problem

Nice fact:
it is reasonably easy to compute that minimizer

We’ll turn to the computation now…
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Definition
The Ordinary Least Squares (OLS) estimators are defined by

�̂�0, �̂�1 ∶= argmin
𝑏0,𝑏1

𝑛

𝑖=1

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2

In words

• we look at the rhs as a function in 𝑏0 and 𝑏1
• that function happens to be quadratic

• we find the values of 𝑏0 and 𝑏1 that minimize that function
• the values that minimize that function are called solution

• we give the solution a specific name: �̂�0 and �̂�1
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Geometry of the minimization problem

The single point at the very bottom (the unique minimum) is
denoted (�̂�0, �̂�1)

50 / 151



Simple Regression Model

Juergen Meinecke

51 / 151



Roadmap

Ordinary Least Squares Estimation

Derivation of OLS Estimator

52 / 151



The mathematics of finding the solution

The basic approach is multivariate calculus which you know from
high school or EMET1001 or both

First step: differentiate ∑𝑛
𝑖=1(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2

𝜕𝑆𝑆𝑅
𝜕𝑏0

= −2
𝑛

𝑖=1

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)

𝜕𝑆𝑆𝑅
𝜕𝑏1

= −2
𝑛

𝑖=1

𝑋𝑖 ⋅ (𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)

This is a set in two linear equations and two unknowns
(𝑏0 and 𝑏1)
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Second step: set derivative to zero
(at this step, 𝑏0 = �̂�0 and 𝑏1 = �̂�1)

0 = −2
𝑛

𝑖=1

(𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖)

0 = −2
𝑛

𝑖=1

𝑋𝑖 ⋅ (𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖)

These two equations are the first order necessary condtions (foc) for
a minimum
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Third step: using the first foc, solve for �̂�0 as function of �̂�1

0 = −2
𝑛

𝑖=1

(𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖)

=
𝑛

𝑖=1

(𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖)

=
𝑛

𝑖=1

𝑌𝑖 −
𝑛

𝑖=1

�̂�0 −
𝑛

𝑖=1

�̂�1𝑋𝑖

=
𝑛

𝑖=1

𝑌𝑖 − 𝑛�̂�0 − �̂�1
𝑛

𝑖=1

𝑋𝑖

which is equivalent to

𝑛�̂�0 =
𝑛

𝑖=1

𝑌𝑖 − �̂�1
𝑛

𝑖=1

𝑋𝑖
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𝑛�̂�0 =
𝑛

𝑖=1

𝑌𝑖 − �̂�1
𝑛

𝑖=1

𝑋𝑖

and

�̂�0 =
∑𝑛

𝑖=1 𝑌𝑖
𝑛 − �̂�1

∑𝑛
𝑖=1 𝑋𝑖
𝑛

= �̄� − �̂�1�̄�

This is an elegant result:
�̂�0 is the sample average of 𝑌 minus �̂�1 times the sample average of
𝑋
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Fourth step: substitute �̂�0 = �̄� − �̂�1�̄� into the second first order
condition from the second step and solve for �̂�1

0 = −2
𝑛

𝑖=1

𝑋𝑖 ⋅ (𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖)

=
𝑛

𝑖=1

𝑋𝑖 ⋅ (𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖)

=
𝑛

𝑖=1

𝑋𝑖 ⋅ (𝑌𝑖 − �̄� + �̂�1�̄� − �̂�1𝑋𝑖)

=
𝑛

𝑖=1

𝑋𝑖 ⋅ (𝑌𝑖 − �̄� − �̂�1(𝑋𝑖 − �̄�))

=
𝑛

𝑖=1

𝑋𝑖𝑌𝑖 − �̄�𝑋𝑖 − �̂�1(𝑋2
𝑖 − �̄�𝑋𝑖)

=
𝑛

𝑖=1

𝑋𝑖𝑌𝑖 − �̄�
𝑛

𝑖=1

𝑋𝑖 − �̂�1
𝑛

𝑖=1

(𝑋2
𝑖 − �̄�𝑋𝑖)
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Continuing…

0 =
𝑛

𝑖=1

𝑋𝑖𝑌𝑖 − �̄�
𝑛

𝑖=1

𝑋𝑖 − �̂�1
𝑛

𝑖=1

(𝑋2
𝑖 − �̄�𝑋𝑖)

=
⎛
⎜
⎜
⎝

𝑛

𝑖=1

𝑋𝑖𝑌𝑖

⎞
⎟
⎟
⎠
− 𝑛�̄��̄� − �̂�1

𝑛

𝑖=1

(𝑋2
𝑖 − �̄�𝑋𝑖),

where we use ∑𝑛
𝑖=1 𝑋𝑖 = 𝑛�̄� (we’ll prove this in the workshop)

Rearranging

�̂�1
𝑛

𝑖=1

(𝑋2
𝑖 − �̄�𝑋𝑖) =

⎛
⎜
⎜
⎝

𝑛

𝑖=1

𝑋𝑖𝑌𝑖

⎞
⎟
⎟
⎠
− 𝑛�̄��̄�

where the lhs can be simplified
𝑛

𝑖=1

(𝑋2
𝑖 − �̄�𝑋𝑖) =

𝑛

𝑖=1

𝑋2
𝑖 − �̄�

𝑛

𝑖=1

𝑋𝑖 =
⎛
⎜
⎜
⎝

𝑛

𝑖=1

𝑋2
𝑖

⎞
⎟
⎟
⎠
− 𝑛�̄�2

Isolating �̂�1 on the left results in…
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�̂�1 =
∑𝑛

𝑖=1 𝑋𝑖𝑌𝑖 − 𝑛�̄��̄�
∑𝑛

𝑖=1 𝑋
2
𝑖  − 𝑛�̄�2

Now we exploit a property of the summation operator:
(we’ll prove this in the workshop)

𝑛

𝑖=1

(𝑋𝑖 − �̄�)(𝑌𝑖 − �̄�) =
⎛
⎜
⎜
⎝

𝑛

𝑖=1

𝑋𝑖𝑌𝑖

⎞
⎟
⎟
⎠
− 𝑛�̄��̄�

Now we use this property to simplify the result for �̂�1:

�̂�1 =
∑𝑛

𝑖=1 𝑋𝑖𝑌𝑖 − 𝑛�̄��̄�
∑𝑛

𝑖=1 𝑋
2
𝑖  − 𝑛�̄�2

=
∑𝑛

𝑖=1(𝑌𝑖 − �̄�)(𝑋𝑖 − �̄�)
∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2

What is the rhs equal to?
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With a tiny modification we see that

�̂�1 =
∑𝑛

𝑖=1(𝑌𝑖 − �̄�)(𝑋𝑖 − �̄�)
∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2

=
1
𝑛
∑𝑛

𝑖=1(𝑌𝑖 − �̄�)(𝑋𝑖 − �̄�)
1
𝑛
∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2

• denominator: sample variance of 𝑋𝑖

• numerator: sample covariance between 𝑋𝑖 and 𝑌𝑖

The OLS estimator of the slope is equal to the ratio of sample
covariance and sample variance!
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In summary, we have now derived the OLS estimators of 𝛽0 and 𝛽1,
they are

�̂�0 = �̄� − �̂�1�̄�

�̂�1 =
∑𝑛

𝑖=1(𝑌𝑖 − �̄�)(𝑋𝑖 − �̄�)
∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2

The OLS estimators are functions of the sample data only

Given the sample data (𝑋𝑖, 𝑌𝑖) we can first compute the rhs for �̂�1
and then we can compute the rhs for �̂�0
Computer programs such as Python easily calculate the rhs for you
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