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Definition
A time series 𝑌𝑡 is stationary if its probability distribution does not
change over time. If a time series is not stationary it is called
non-stationary.

Intuitively, stationarity requires the future to be like the past
(in a probabilistic sense)

If we believe the future to be fundamentally different from the past,
then using past data to make forecasts for the future may be
unreliable

We would like our time series to be stationary

There is one particular threat to stationarity that we will learn to
address…
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Definition
A trend is a persistent, long-term movement or tendency.

There are two types of trends

• deterministic: non-random functions of time
(relatively easy to deal with)

• stochastic: random functions of time
(require econometric testing)

Stochastic trends create serious econometric challenges

Time series with stochastic trends are non-stationary
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Simple examples of time series that follow deterministic trends are
given by the following equations:

linear 𝑋𝑡 = 𝛽0 + 𝛽1𝑡 + 𝑢𝑡
quadratic 𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2 + 𝑢𝑡
cubic 𝑍𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2 + 𝛽3𝑡3 + 𝑢𝑡

It’s easy to account for the presence of deterministic trends:
Just add a flexible function of time on the rhs of your regressions

In your regression, just include 𝑡 and perhaps 𝑡2 as regressors
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Linear deterministic trend
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Linear quadratic trend
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Stochastic trends, on the other hand, create bigger problems

Simplest example of a time series that follows stochastic trend:

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝑢𝑡,

where

• 𝛽1 = 1
• E(𝑢𝑡|𝑌𝑡−1, 𝑌𝑡−2, …) = 0

This model is called random walk with drift

The coefficient 𝛽0 is the drift

When 𝛽0 = 0 we get the random walk
𝑌𝑡 = 𝑌𝑡−1 + 𝑢𝑡

Why is it called random walk?
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Rewrite it equivalently like so:
Δ𝑌𝑡 = 𝑢𝑡,

where, as usual, Δ𝑌𝑡 ∶= 𝑌𝑡 − 𝑌𝑡−1

So period-to-period changes are completely random

In fact E(Δ𝑌𝑡|𝑌𝑡−1, 𝑌𝑡−2, …) = 0,
so the expected period-to-period change given past observations is
zero

Past observations don’t play a role in predicting current changes in
the time series

Time series with this property are also called martingales
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Here is one computer draw of a random walk with drift
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Two key features of the random walk model

• 𝑌𝑇+1|𝑇 = 𝛽0 + 𝑌𝑇
The forecast for the next period is today’s observation
(adjusted for the drift)

• Suppose, for simplicity, 𝑌0 = 0 then
Var (𝑌1) = Var (𝑌0) + Var (𝑢1) = 𝜎2𝑢
Var (𝑌2) = Var (𝑌1) + Var (𝑢2) = 𝜎2𝑢 + 𝜎2𝑢 = 2 ⋅ 𝜎2𝑢
Var (𝑌3) = Var (𝑌2) + Var (𝑢3) = 2 ⋅ 𝜎2𝑢 + 𝜎2𝑢 = 3 ⋅ 𝜎2𝑢
Var (𝑌4) = Var (𝑌3) + Var (𝑢4) = 3 ⋅ 𝜎2𝑢 + 𝜎2𝑢 = 4 ⋅ 𝜎2𝑢

⋮
Var (𝑌𝑡) = Var (𝑌𝑡−1) + Var (𝑢𝑡) = (𝑡 − 1) ⋅ 𝜎2𝑢 + 𝜎2𝑢 = 𝑡 ⋅ 𝜎2𝑢

This illustrates that the variance depends on 𝑡, and therefore 𝑌𝑡
cannot be stationary (why?)
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In the AR(1) model 𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝑢𝑡 in which 𝑢𝑡 is stationary
we distinguish two cases:

• if |𝛽1| < 1 then 𝑌𝑡 will be stationary
• if 𝛽1 = 1 then 𝑌𝑡 will be non-stationary

Aside: economists do not consider the case

• |𝛽1| > 1: explosive (perhaps for periods of hyperinflation?)

When 𝑌𝑡 is non-stationary, we also sometimes say that it

• has a unit root

• follows a stochastic trend

We use the terms non-stationarity, stochastic trend, and unit root
interchangeably
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In the more general AR(p) model
𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 +⋯+ 𝛽𝑝𝑌𝑡−𝑝 + 𝑢𝑡

the definition of unit root is a bit more involved

We say that the AR(p) model contains a unit root if at least one of
the solutions to the polynomial equation 1 − 𝛽1𝑧 − 𝛽2𝑧2 −⋯− 𝛽𝑝𝑧𝑝 = 0
is equal to 1 in absolute value

We will not prove this and it wouldn’t be something you can just
check by hand

But you can see that if 𝑝 = 1 this definition coincides with 1 − 𝛽1𝑧 = 0
so that the solution 𝑧 = 1/𝛽1 will be equal to 1 in absolute value only
if |𝛽1| = 1
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Unit roots create three problems

1. AR coefficients are biased towards zero
• suppose 𝑌𝑡 contains a unit root but you ignore this
• you estimate the AR(1) model: 𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝑢𝑡

• the OLS estimator 𝛽̂1 will be biased
• time series econometricians have worked out a simple formula for
this bias: E[𝛽̂1] = 1 − 5.3/𝑇

• forecasts will also be biased

2. Asymptotic distribution is non-normal
• distribution of the OLS estimator is not close to normal
• cannot simply use the standard errors, 𝑡-statistic, p-values or
confidence intervals that Python spits out in its standard
regression output
(because they all assume the normal distribution)

• in other words: standard statistical inference will not work
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3. Spurious regression problem: Because of stochastic trends, any
two time series may appear related when they are not
Good example from textbook:

• US unemployment rate and Japanese industrial production
• these two time series aren’t meaningfully related
• stylized fact: both contain unit root
• regressing both against each other
using data from 1962 to 1985:
US unemployment rate𝑡 = −2.37 + 2.22

(0.32)
⋅ lnJapanese IP𝑡

• between 1962 and 1985 both US unemployment and Japanese
industrial production happened to be rising

• this creates a spurious positive correlation between the two
• using data from 1986 to 2017:
US unemployment rate𝑡 = −42.37 − 7.92

(1.69)
⋅ lnJapanese IP𝑡

• bottom line: there’s a correlation but not a relation!
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Because of the three problems just discussed you should not run
AR(p) estimations with time series that contain unit roots

Forecasts based on such models will be misleading or wrong

How can we know which time series contain unit roots?

Dickey and Fuller developed a reasonably easy test that should be
conducted before you do any time series analysis
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It is easiest to illustrate the DF test using an AR(1) model

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝑢𝑡,

which is equivalent to
Δ𝑌𝑡 = 𝛽0 + 𝛿𝑌𝑡−1 + 𝑢𝑡, 𝛿 ∶= 𝛽1 − 1

To test 𝑌𝑡 for unit root, we could simply test the coefficient 𝛿

Formally, we are testing

𝐻0 ∶ 𝛿 = 0 versus 𝐻1 ∶ 𝛿 < 0

Caution: test is one-sided (because we only consider 𝛽1 ≤ 1)!

Remember: if 𝛿 = 0 then 𝛽1 = 1 (unit root)
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To conduct this test, you would simply regress Δ𝑌𝑡 against 𝑌𝑡−1 and
check the resulting coefficient estimate 𝛿̂ for significance

Complication: you cannot simply use the standard error, 𝑡-statistic,
p-value or confidence intervals that Python spits out

The coefficient estimate 𝛿̂ does not have an approximate normal
distribution

So you cannot apply the usual critical value of 1.96
(which comes from the standard normal distribution)

Instead, the distribution is non-normal

Fortunately, Dickey and Fuller have derived the correct critical values
for us
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In deriving the critical values, DF distinguish between two different
AR(1) model specifications:

intercept only Δ𝑌𝑡 = 𝛽0 + 𝛿𝑌𝑡−1 + 𝑢𝑡
incl. deterministic time trend Δ𝑌𝑡 = 𝛽0 + 𝛼𝑡 + 𝛿𝑌𝑡−1 + 𝑢𝑡

The corresponding critical values (5% significance level) are:

Model specification Critical value
Intercept only -2.86
Intercept and time trend -3.41

For example, in the model specification with intercept only, the null
hypothesis of a unit root is rejected if the 𝑡-statistic is less than −2.86
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Example: unit root test for inflation (based on CPIAUCSL)

Does this time series contain a unit root?

(Can’t say just from visual inspection)
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Let’s run the regression that DF suggest

Need to estimate the model Δinfl𝑡 = 𝛽0 + 𝛼𝑡 + 𝛿infl𝑡−1 + 𝑢𝑡

Python Code (output edited)
> df['trend'] = range(1, len(df.infl) + 1)
> unit_root_ar1 = smf.ols('dinfl ~ trendtrend + l1infl', data=df, missing='drop').fit(use_t=False)
> print(unit_root_ar1.summary())

deterministic time trenddeterministic time trend

compare to DF crit value!compare to DF crit value!
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 1.0448 0.295 3.545 0.000 0.467 1.623
trend -0.0006 0.001 -0.400 0.689 -0.003 0.002
l1infl -0.2794 0.039 -7.079-7.079 0.000 -0.357 -0.202
==============================================================================

We estimate 𝛿̂ = −0.2794 with a t-stat of −7.079

trend

deterministic time trend

compare to DF crit value!

-7.079
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Caution: Do not use the “robust” option for the DF test!

The 𝑡-statistic is −7.079 which we will compare to the critical value
provided by DF

Recall that the DF unit root test is one-sided: the 𝑡-statistic will
always be negative; the key question is whether it is sufficiently
small to distinguish it from zero

Here we find that −7.079 < −3.41 and conclude that we reject the null
hypothesis of a unit root (5% significance level)
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Here’s a convenience function to run the test in one line
Python Code

> from statsmodels.tsa.stattools import adfuller
> adfuller(df.infl.dropna(), maxlag = 0, regression='ct')

(-7.0790892115383155-7.0790892115383155,
9.351678189617628e-099.351678189617628e-09, p-valuep-value
0,
311,
'1%': -3.988178023764844, '5%': -3.4247019735849102, '10%': -3.1354051510159615,
1376.089008314922)

Can compare t-stat to DF critical value or interpret the p-value

Note: the option regression permits the following:

• regression='c': include constant only (default)
• regression='ct': include constant and linear time trend
• regression='ctt': include constant, linear and quadratic trend
• regression='n': include no constant and no trend

-7.0790892115383155
9.351678189617628e-09 p-value
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Dickey and Fuller also developed a unit root test that is based on the
more general AR(p) model

The generalization is straightforward, consider the AR(p) model in
first differences

Δ𝑌𝑡 = 𝛽0 + 𝛼𝑡 + 𝛿𝑌𝑡−1 + 𝛾1Δ𝑌𝑡−1 +⋯+ 𝛾𝑝Δ𝑌𝑡−𝑝 + 𝑢𝑡

Depending on whether 𝛼 ≠ 0 or 𝛼 = 0 you can look at this as a model
with or without deterministic time trend

The same critical values from the previous table still apply here

Estimating the above AR(p) model is easy

For example, I am estimating an AR(4) model now…
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Let’s run the regression that DF suggest

Python Code (output edited)
> # creating four lags of dinfl
> df['l1dinfl'] = df.dinfl.shift(1)
> df['l2dinfl'] = df.dinfl.shift(2)
> df['l3dinfl'] = df.dinfl.shift(3)
> df['l4dinfl'] = df.dinfl.shift(4)

> unit_root_ar4 = smf.ols('dinfl ~ trend + l1infl + l1dinfl + l2dinfl + l3dinfl + l4dinfl',
data=df, missing='drop').fit(use_t=False)

> print(unit_root_ar4.summary())

==============================================================================
coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------
Intercept 0.6682 0.300 2.227 0.026 0.080 1.256
trend 2.451e-05 0.001 0.018 0.986 -0.003 0.003
l1infl -0.2033 0.046 -4.425-4.425 0.000 -0.293 -0.113
l1dinfl -0.1618 0.062 -2.590 0.010 -0.284 -0.039
l2dinfl -0.1824 0.063 -2.899 0.004 -0.306 -0.059
l3dinfl 0.1316 0.060 2.196 0.028 0.014 0.249
l4dinfl -0.1016 0.057 -1.788 0.074 -0.213 0.010
==============================================================================

-4.425
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Caution: do not use the “robust” option for the DF test!

The 𝑡-statistic is −4.425 which we will compare to the critical value
provided by DF

Here we find that −4.425 < −3.41 and conclude that we reject the null
hypothesis of a unit root (5% significance level)
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Again using the convenience function to run the test in one line

Python Code
> from statsmodels.tsa.stattools import adfuller
> adfuller(df.infl.dropna(), maxlag = 4, regression='ct')

(-4.425190419784897-4.425190419784897,
0.001995606026544201,
4,
307,
'1%': -3.9885651881396162, '5%': -3.424888419060633, '10%': -3.135514568313964,
1330.8744210409302)

Compare t-stat to DF critical value or alternatively interpret the
p-value

-4.425190419784897
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