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Suppose I give you a time series 𝑌𝑡 and ask you to produce forecasts,
what should you do?

Let’s try to tie up all loose ends and come up with some practical
advice

Given the time series 𝑌𝑡, here’s what you should do to produce the
best forecast…
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• Graph it
Sometimes you can spot deterministic trends in graphs (e.g.,
GDP)
A graph will definitely not help you spot a stochastic trend

• Run an ADF unit root test on 𝑌𝑡
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• If you reject the null hypothesis of a unit root:
Estimate the AR(p) model for 𝑌𝑡:

𝑌𝑡 = 𝛽0 + 𝛼𝑡 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 +⋯+ 𝛽𝑝𝑌𝑡−𝑝 + 𝑢𝑡

(It’s always safe to include a deterministic time trend)
You can easily estimate this in Python
Use the AR(p) model for 𝑌𝑡 to produce your forecasts
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• If you cannot reject the null hypothesis of a unit root:
Generate first differences Δ𝑌𝑡 of the data and run a unit root
test on Δ𝑌𝑡
In 90% of practical situations, you will reject the null hypothesis
of a unit root in Δ𝑌𝑡 (in other words, first differencing effectively
removes the unit root)
This suggests that you should use an AR(p) model for Δ𝑌𝑡:

Δ𝑌𝑡 = 𝛽0 + 𝛼𝑡 + 𝛽1Δ𝑌𝑡−1 + 𝛽2Δ𝑌𝑡−2 +⋯+ 𝛽𝑝Δ𝑌𝑡−𝑝 + 𝑢𝑡

Since Δ𝑌𝑡 is stationary, you can easily estimate this in Python
Use the AR(p) model for Δ𝑌𝑡 to produce your forecasts
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During the last two weeks I have used inflation as the running
example to illustrate important concepts

Recall that we defined inflation to be

infl𝑡 ∶= 400 ⋅ ln(cpi𝑡) − ln(cpi𝑡−1)

(this is the annualized version of quarter-to-quarter inflation; but it
would work just the same if we hadn’t used the annualized version)

Our goal:
Come up with the best AR(p) model to forecast inflation

Let’s go through the steps
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Graphing the data

Deterministic trend: not obvious
Stochastic trend: never obvious
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Test for unit root

A few slides ago...

Python Code
> from statsmodels.tsa.stattools import adfuller
> adfuller(df.infl.dropna(), maxlag = 4, regression='ct')

(-4.326654917258239-4.326654917258239,
0.002859266677586885,
4,
299,
'1%': -3.989370928165566, '5%': -3.425276382171434, '10%': -3.1357422321841852,
1302.0922149117841)

Dickey Fuller critical value is -3.41
Reject the null hypothesis of unit root here

-4.326654917258239
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Therefore, our best time series model is this one:

infl𝑡 = 𝛽0 + 𝛼𝑡 + 𝛽1infl𝑡−1 + 𝛽2infl𝑡−2
+ 𝛽3infl𝑡−3 + 𝛽4infl𝑡−4 + 𝑢𝑡

Let’s estimate it…
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Python Code (output edited)
> ar4trend = smf.ols('infl ~ l1infl + l2infl + l3infl + l4infl + trend',

data=df, missing='drop').fit(use_t=False)
> print(ar4trend.summary())

OLS Regression Results
==============================================================================
Dep. Variable: infl R-squared: 0.561
Model: OLS Adj. R-squared: 0.553
Method: Least Squares F-statistic: 75.12
No. Observations: 300 AIC: 1307.
Df Residuals: 294 BIC: 1329.
Df Model: 5
Covariance Type: nonrobust
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.7412 0.303 2.446 0.014 0.147 1.335
l1infl 0.6197 0.058 10.770 0.000 0.507 0.732
l2infl 0.0069 0.065 0.107 0.915 -0.121 0.134
l3infl 0.3130 0.065 4.807 0.000 0.185 0.441
l4infl -0.1668 0.057 -2.907 0.004 -0.279 -0.054
trend 7.163e-05 0.001 0.051 0.960 -0.003 0.003
==============================================================================
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What should we do with these estimates now?

Reminder:
the time series CPIAUCSL ran from 1947:Q1 to 2023:Q1

That’s 305 observations on CPIAUCSL

That’s 304 observations on infl

Remember that our main goal is to produce forecasts

Let’s produce an inflation forecast for 2023:Q2

It’s very easy given our AR(4) estimates
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Recall the observed data on inflation

Python Code
> df.infl.tail(5)
quarter
2022Q1 8.782463
2022Q2 9.218537
2022Q3 5.396727
2022Q4 4.079804
2023Q1 3.741816
Freq: Q-DEC, Name: infl, dtype: float64

Obtain forecast by plugging into the estimated model:
infl2023∶𝑄2|2023∶𝑄1 = 0.7412 + 0.00007163 ⋅ 304

+ 0.6197 ⋅ (3.7418) + 0.0069 ⋅ (4.080)
+ 0.3130 ⋅ (5.3967) − 0.1668 ⋅ (9.2185)

= 0.9426
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The CPIAUCSL time series runs from 1947:Q1 to 2023:Q1

To measure forecast performance, we could follow this little
algorithm:

1. pretend like your data already ends in 𝑠=2005:Q1
2. estimate an AR(4) model for infl𝑡 for
the time frame 1947:Q1 to 𝑠

3. calculate a forecast for period 𝑠 + 1: infl𝑠+1|𝑠
4. compare the forecast to the actual realization infl𝑠+1;
difference is the forecast error: infl𝑠+1 − infl𝑠+1|𝑠

5. shift 𝑠 up by one period an jump back to step 2

Repeat until you reach end of your data set (𝑠 ≤ 𝑇), with 𝑇 ∶=2023:Q1
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This algorithm creates a shifting or rolling one-quarter pseudo
out-of-sample forecast

So we obtain lots of one-quarter forecasts of inflation for the time
period 2005:Q2 to 2023:Q1

This puts us in a position to compare our one-quarter forecasts to
the actual inflation numbers

This is a bit complicated to code in Python, so I won’t ask you to do
it yourselves

Nevertheless, I have implemented this algorithm in Python and ran
it over the inflation data

Here’s the output in two pictures…
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Inflation: actual versus forecast
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Forecast error (vertical difference between two lines from previous
slide)

Is this a good model or a bad model?
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This simple AR(4) model already does a reasonable job

And it took you only two and a half weeks of time series
econometrics to be able to do this!

Where from here?

You could try different AR(𝑝) models
(What’s the optimal ‘choice’ of 𝑝?)

We could use an estimate of the so-called mean square forecast
error (MSFE) to judge which model produces the best forecasts

You will learn much more on time series regression and forecasting
in courses like EMET3007 or EMET3008

If you care more about the micro-econometric applications that we
covered in weeks 1-9 of the semester, then EMET3004 or EMET3006
are right for you
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