
Multiple Regression Model

Juergen Meinecke

87 / 133

Roadmap

Functional Form Specifications

Dummy Variable Trap

88 / 133

Let’s say you have available 𝐺 dummy variables that together are
mutually exclusive and exhaustive of the population

Example: smoker with 𝐺 = 2

Two dummies:

• smoker equal 1 if person is a smoker
(zero otherwise)

• nonsmoker equal 1 if person is a non-smoker
(zero otherwise)

If you are interested in the association between smoking and
birthweight then you may want to consider the following three
specifications

• birthweight = 𝛽0 + 𝛽1smoker + 𝑢𝑖
• birthweight = 𝛽0 + 𝛽2non-smoker + 𝑢𝑖
• birthweight = 𝛽0 + 𝛽1smoker + 𝛽2non-smoker + 𝑢𝑖

89 / 133

Regression with both smoker and nonsmoker will throw an error
(that’s the dummy variable trap)

Python Code (output edited)
> reg1 = smf.ols('birthweight ~ smoker', data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> reg1.summary()
==

coef std err z P>|z| [0.025 0.975]
--
Intercept 3432.06003432.0600 11.891 288.638 0.000 3408.755 3455.365
smoker -253.2284 26.810 -9.445 0.000 -305.776 -200.681
==

> df['nonsmoker'] = 1 - df.smoker
> reg2 = smf.ols('birthweight ~ nonsmoker', data=df, missing='drop')
> .fit(cov_type='HC1', use_t=False)
> reg2.summary()
==

coef std err z P>|z| [0.025 0.975]
--
Intercept 3178.83163178.8316 24.029 132.289 0.000 3131.735 3225.928
nonsmoker 253.2284 26.810 9.445 0.000 200.681 305.776
==

In each regression, the group represented by ‘zero’ is the so-called
benchmark or default group (represented by the constant term)

Absolute value of slope coefficient is identical

3432.0600

3178.8316

90 / 133

Example: number of prenatal visits with 𝐺 = 4

Four dummies

• tripre0 equal 1 if never went for prenatal health visits
(presumably a problematic group)

• tripre1 equal 1 if first prenatal health visit in 1st trimester
(presumably the most common group)

• tripre2 equal 1 if first prenatal health visit in 2nd trimester

• tripre3 equal 1 if first prenatal health visit in 3rd trimester

We’ve just learned: only need to use a subset of three dummies

Which subset should we use?

It doesn’t matter: as long as we use any three, we are not throwing
out any information

However: the unused dummy dummy implicitly defines the
benchmark group

91 / 133

From the week 8 lab: 𝐺 = 4, what are the benchmark groups here:

Python Code (output edited)
> # benchmark: first prenatal health visit in 1st trimester
> formula_reg1 = 'birthweight ~ smoker + alcohol + tripre0 + tripre2 + tripre3'
> reg1 = smf.ols(formula_reg1, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> reg1.summary()
==

coef std err z P>|z| [0.025 0.975]
--
Intercept 3454.5493 12.482 276.770 0.000 3430.086 3479.013
smoker -228.8476 26.549 -8.620 0.000 -280.882 -176.813
alcohol -15.1000 69.703 -0.217 0.828 -151.715 121.516
tripre0 -697.9687 146.579 -4.762 0.000 -985.258 -410.680
tripre2 -100.8373 31.553 -3.196 0.001 -162.680 -38.995
tripre3 -136.9553 67.696 -2.023 0.043 -269.637 -4.274
==

> # benchmark: never went for prenatal health visit
> formula_reg2 = 'birthweight ~ smoker + alcohol + tripre1 + tripre2 + tripre3'
> reg2 = smf.ols(formula_reg2, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> reg2.summary()
==

coef std err z P>|z| [0.025 0.975]
--
Intercept 2756.5806 146.077 18.871 0.000 2470.274 3042.887
smoker -228.8476 26.549 -8.620 0.000 -280.882 -176.813
alcohol -15.1000 69.703 -0.217 0.828 -151.715 121.516
tripre1 697.9687 146.579 4.762 0.000 410.680 985.258
tripre2 597.1315 149.102 4.005 0.000 304.897 889.366
tripre3 561.0135 160.945 3.486 0.000 245.566 876.461
==

92 / 133

Multiple Regression Model

Juergen Meinecke

93 / 133

Roadmap

Functional Form Specifications

Polynomials in 𝑋

94 / 133

Consider the following multiple regression model:
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑋2

𝑖 +⋯+ 𝛽𝑟𝑋𝑟
𝑖 + 𝑢𝑖

(Note: for simplicity we omit other regressors)

This is just the linear multiple regression model – except that the
regressors are powers of X

Estimation, hypothesis testing, etc. proceeds as in the multiple
regression model using OLS

The coefficients are difficult to interpret, but the regression function
itself is interpretable

95 / 133

We will illustrate the use of polynomials using the textbook’s data on
test scores and student teacher ratios

Here we focus on the following two variables only

• 𝑡𝑒𝑠𝑡𝑠𝑐𝑟𝑖 is average test score in school district 𝑖
• 𝑎𝑣𝑔𝑖𝑛𝑐𝑖 is the average income in school district 𝑖
(thousands of dollars per capita)

Quadratic specification:

𝑡𝑒𝑠𝑡𝑠𝑐𝑟𝑖 = 𝛽0 + 𝛽1𝑎𝑣𝑔𝑖𝑛𝑐𝑖 + 𝛽2𝑎𝑣𝑔𝑖𝑛𝑐2𝑖 + 𝑢𝑖

Cubic specification:

𝑡𝑒𝑠𝑡𝑠𝑐𝑟𝑖 = 𝛽0 + 𝛽1𝑎𝑣𝑔𝑖𝑛𝑐𝑖 + 𝛽2𝑎𝑣𝑔𝑖𝑛𝑐2𝑖 + 𝛽3𝑎𝑣𝑔𝑖𝑛𝑐3𝑖 + 𝑢𝑖

96 / 133

Estimation of the quadratic specification in Python

Python Code (output edited)
> formula = 'testscr ~ avginc + I(avginc**2)I(avginc**2)'
> reg1 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg1.summary())

OLS Regression Results
==

coef std err z P>|z| [0.025 0.975]
--
Intercept 607.3017 2.902 209.288 0.000 601.614 612.989
avginc 3.8510 0.268 14.364 0.000 3.326 4.376
I(avginc ** 2)I(avginc ** 2) -0.0423 0.005 -8.851 0.000 -0.052 -0.033
==
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

I(avginc**2)

I(avginc ** 2)

97 / 133

Compare the predicted values between linear and quadratic
specification

98 / 133

How to interpret the estimated PRF?

Estimated PRF is
􏾩𝑡𝑒𝑠𝑡𝑠𝑐𝑟𝑖 = 607 + 3.85𝑎𝑣𝑔𝑖𝑛𝑐𝑖 − 0.042𝑎𝑣𝑔𝑖𝑛𝑐2𝑖

Predicted change in 𝑡𝑒𝑠𝑡𝑠𝑐𝑟𝑖 for a change in 𝑎𝑣𝑔𝑖𝑛𝑐𝑖 from $5,000 to
$6,000 per capita (note: 𝑎𝑣𝑔𝑖𝑛𝑐𝑖 is in thousands of dollars):

Δ 􏾩𝑡𝑒𝑠𝑡𝑠𝑐𝑟𝑖 = 607 + 3.85 ⋅ 6 − 0.0423 ⋅ 62−
(607 + 3.85 ⋅ 5 − 0.0423 ⋅ 52)
=3.4

99 / 133

Predicted effects for different values of 𝑎𝑣𝑔𝑖𝑛𝑐𝑖

Δ𝑎𝑣𝑔𝑖𝑛𝑐 Δ𝑡𝑒𝑠𝑡𝑠𝑐𝑟
from $5,000 to $6,000 3.4
from $25,000 to $26,000 1.7
from $45,000 to $46,000 0.0

The effect of changing 𝑎𝑣𝑔𝑖𝑛𝑐𝑖 on 𝑡𝑒𝑠𝑡𝑠𝑐𝑟𝑖 is decreasing in 𝑎𝑣𝑔𝑖𝑛𝑐𝑖
The second derivative is negative (that’s because the coefficient
estimate on the quadratic term is negative)

Caution: do not extrapolate outside the range of the data

100 / 133

Estimation of the cubic specification in Python

Python Code (output edited)
> formula = 'testscr ~ avginc + I(avginc**2) + I(avginc**3)I(avginc**3)'
> reg2 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg2.summary())

OLS Regression Results
==

coef std err z P>|z| [0.025 0.975]
--
Intercept 600.0790 5.102 117.615 0.000 590.079 610.079
avginc 5.0187 0.707 7.095 0.000 3.632 6.405
I(avginc ** 2) -0.0958 0.029 -3.309 0.001 -0.153 -0.039
I(avginc ** 3)I(avginc ** 3) 0.0007 0.000 1.975 0.048 5.25e-06 0.001
==
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

I(avginc**3)

I(avginc ** 3)

101 / 133

Testing the null hypothesis of linearity, against the alternative that
the population regression is quadratic and/or cubic, that is, it is a
polynomial of degree up to 3:

𝐻0 ∶ population coefficients on 𝑎𝑣𝑔𝑖𝑛𝑐2 and 𝑎𝑣𝑔𝑖𝑛𝑐3 both 0

𝐻1 ∶ at least one of these coefficients is nonzero

102 / 133

Python Code
> ftest = reg2.f_test('I(avginc ** 2) = I(avginc ** 3) = 0')
> print(ftest)

tiny p-valuetiny p-value

<F test: F=37.69077411568449, p=9.042596378792848e-16p=9.042596378792848e-16, df_denom=416, df_num=2>

The hypothesis that the population regression is linear is rejected at
the 5% significance level against the alternative that it is a
polynomial of (up to) third order

tiny p-value

p=9.042596378792848e-16

103 / 133

Multiple Regression Model

Juergen Meinecke

104 / 133

Roadmap

Functional Form Specifications

Logarithmic functions of 𝑋 or 𝑌

105 / 133

Using logarithmic transformations of both the dependent and
independent variables can be useful when estimating coefficients

Using the student test score example, let’s focus on two variables:

• 𝑌𝑖: test score in school district 𝑖
• 𝑋𝑖: average income in school district 𝑖
(this is a proxy for socio economic status of the district)

Let’s look at the simple regression model
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖

We estimate 𝛽1 by running a regression of 𝑌𝑖 on 𝑋𝑖

But what do we estimate when instead we

• run a regression of ln𝑌𝑖 on 𝑋𝑖?

• run a regression of 𝑌𝑖 on ln𝑋𝑖?

• run a regression of ln𝑌𝑖 on ln𝑋𝑖?
106 / 133

The logarithm has useful features based on calculus

Compare the independent variable at two values 𝑥1 and 𝑥0
(it works the same for the dependent variable)

Starting at 𝑥0, you change the dependent variable by Δ𝑥 ∶= 𝑥1 − 𝑥0
Define the following: 𝑥̃1 = ln(𝑥1) and 𝑥̃0 = ln(𝑥0)

The corresponding change in the logarithm captures:
Δ𝑥̃ ∶= 𝑥̃1 − 𝑥̃0 = ln(𝑥1) − ln(𝑥0) = ln(𝑥0 + Δ𝑥) − ln(𝑥0)

= ln 􏿶
𝑥0 + Δ𝑥

𝑥0
􏿹 = ln 􏿶1 +

Δ𝑥
𝑥0

􏿹 ≈
Δ𝑥
𝑥0

= percentage change

The difference in the logarithmic values of 𝑥1 and 𝑥0 is approximately
equal to the percentage change between 𝑥1 and 𝑥0
The difference in logarithms approximates percentage changes

107 / 133

For example
𝑥0 = 50 𝑥̃0 = ln(𝑥0) = 3.91
𝑥1 = 52 𝑥̃1 = ln(𝑥1) = 3.95

⟹ Δ𝑥
𝑥0

= 4% ⟹ Δ𝑥̃ = 0.04

Another example:

If Δ𝑥̃ = 0.07 then you know that 𝑥 increased by 7%

In a few slides we will have:
Δ𝑥̃ = 1 which means that 𝑥 increased by 100%

(Aside: the log-approximation works best when the change from 𝑥0
to 𝑥1 is small)

108 / 133

Back to the regression model

You create log-versions of both 𝑋𝑖 and 𝑌𝑖

• 􏾪𝑋𝑖 ∶= ln𝑋𝑖

• 􏾪𝑌𝑖 ∶= ln𝑌𝑖

Now compare the following four specifications:

Specification Population regression function
(1) linear–linear 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖
(2) linear–log 𝑌𝑖 = 𝛽0 + 𝛽1􏾪𝑋𝑖
(3) log–linear 􏾪𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖
(4) log–log 􏾪𝑌𝑖 = 𝛽0 + 𝛽1􏾪𝑋𝑖

The interpretation of the slope coefficient 𝛽1 differs in each case

The generic interpretation of the slope coefficient 𝛽1 is:
By how much does the dependent variable change, on average, when
the independent variable changes by one unit?

109 / 133

What does this mean in the different specifications?

(1) 𝛽1 =
Δ𝑌𝑖
Δ𝑋𝑖

therefore Δ𝑋𝑖 = 1 ⟹ Δ𝑌𝑖 = 𝛽1

𝑋 up by 1 unit, 𝑌 up by 𝛽1 units

(2) 𝛽1 =
Δ𝑌𝑖

Δ􏾪𝑋𝑖
therefore Δ􏾪𝑋𝑖 = 1 ⟹ Δ𝑌𝑖 = 𝛽1

𝑋 up by 100%, 𝑌 up by 𝛽1 units

(3) 𝛽1 =
Δ􏾪𝑌𝑖
Δ𝑋𝑖

therefore Δ𝑋𝑖 = 1 ⟹ Δ􏾪𝑌𝑖 = 𝛽1

𝑋 up by 1 unit, 𝑌 up by 100 ⋅ 𝛽1%

(4) 𝛽1 =
Δ􏾪𝑌𝑖

Δ􏾪𝑋𝑖
therefore Δ􏾪𝑋𝑖 = 1 ⟹ Δ􏾪𝑌𝑖 = 𝛽1

𝑋 up by 100%, 𝑌 up by 100 ⋅ 𝛽1%

Let’s illustrate specifications (2), (3), and (4) in Python…
110 / 133

Linear-log specification

Python Code (output edited)
> import numpy as np
> formula = 'testscr ~ I(np.log(avginc))I(np.log(avginc))'
> reg3 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg3.summary())

OLS Regression Results
===

coef std err z P>|z| [0.025 0.975]

Intercept 557.8323 3.840 145.271 0.000 550.306 565.358
I(np.log(avginc))I(np.log(avginc)) 36.4197 1.397 26.071 0.000 33.682 39.158
===
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Interpretation:
a 100% increase in avginc is associated with an increase in
testscr by 36.42 points (the measurement units of testscr) on
average

or alternatively:
a 1% increase in avginc is associated with an increase in testscr
by 0.3642 points on average

I(np.log(avginc))

I(np.log(avginc))

111 / 133

Log-linear specification

Python Code (output edited)
> formula = 'I(np.log(testscr))I(np.log(testscr)) ~ avginc'
> reg4 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg4.summary())

OLS Regression Results
==

coef std err z P>|z| [0.025 0.975]
--
Intercept 6.4394 0.003 2225.210 0.000 6.434 6.445
avginc 0.0028 0.000 16.244 0.000 0.003 0.003
==
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Interpretation:
an increase by $1 in avginc will increase testscr by 0.28% on
average

I(np.log(testscr))

112 / 133

Log-log specification

Python Code (output edited)
> formula = 'I(np.log(testscr)) ~ I(np.log(avginc))'
> reg5 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg5.summary())

OLS Regression Results
===

coef std err z P>|z| [0.025 0.975]

Intercept 6.3363 0.006 1069.501 0.000 6.325 6.348
I(np.log(avginc)) 0.0554 0.002 25.841 0.000 0.051 0.060
===
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Interpretation:
an increase by 100% in avginc will increase testscr by 5.5% on
average

or alternatively:
an increase by 1% in avginc will increase testscr by 0.055% on
average

The coefficient 𝛽1 measures the elasticity of 𝑌 with respect to 𝑋
113 / 133

Multiple Regression Model

Juergen Meinecke

114 / 133

Roadmap

Functional Form Specifications

Interaction Terms

115 / 133

Interactions Between two Binary Regressors

We will illustrate the use of interaction terms using the textbook’s
data on test scores and student teacher ratios

Consider the following multiple regression model:
𝑡𝑒𝑠𝑡𝑠𝑐𝑟𝑖 = 𝛽0 + 𝛽1𝑠𝑡𝑟𝑖 + 𝛽2𝑒𝑙_𝑝𝑐𝑡𝑖 + 𝑢𝑖,

where

• 𝑡𝑒𝑠𝑡𝑠𝑐𝑟𝑖 is average test score in school district 𝑖
• 𝑠𝑡𝑟𝑖 is average student-teacher ratio in school district 𝑖
• 𝑒𝑙_𝑝𝑐𝑡𝑖 is percent of English learners in school district 𝑖
(remember, this data set is from California where many students
are native Spanish speakers)

116 / 133

When you run this regression in Python, this is what you get:

Python Code (output edited)
> formula = 'testscr ~ str + el_pct'
> reg6 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg6.summary())

OLS Regression Results
==

coef std err z P>|z| [0.025 0.975]
--
Intercept 686.0322 8.728 78.599 0.000 668.925 703.139
str -1.1013 0.433 -2.544 0.011 -1.950 -0.253
el_pct -0.6498 0.031 -20.939 0.000 -0.711 -0.589
==
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

117 / 133

Interpreting the results

• If district 𝑖 could decrease 𝑠𝑡𝑟𝑖 by one unit while holding 𝑒𝑙_𝑝𝑐𝑡𝑖
constant, it can expect an increase in average test scores of 1.10

• If district 𝑖 could decrease 𝑒𝑙_𝑝𝑐𝑡𝑖 by one percentage point while
holding 𝑠𝑡𝑟𝑖 constant, it can expect an increase in average test
scores of 0.65

• Both effects a statistically significant at 5% level

118 / 133

Perhaps a class size reduction is more effective in some
circumstances than in others

Perhaps the effect of student-teacher ratio on test scores varies with
the percentage of English learners

This would be the case, for example, if English learners benefit
disproportionately from smaller class sizes (and therefore lower
student-teacher ratios)

More technically, Δ𝑡𝑒𝑠𝑡𝑠𝑐𝑟
Δ𝑠𝑡𝑟 might depend on 𝑒𝑙_𝑝𝑐𝑡

More generally, Δ𝑌
Δ𝑋1

might depend on 𝑋2

How to model such interactions between 𝑋1 and 𝑋2?

119 / 133

Baseline model

𝑌𝑖 = 𝛽0 + 𝛽1𝐷1𝑖 + 𝛽2𝐷2𝑖 + 𝑢𝑖,

where 𝐷1𝑖 and 𝐷2𝑖 are binary regressors (dummy variables)

𝛽1 is the effect on 𝑌𝑖 of changing 𝐷1𝑖 = 0 to 𝐷1𝑖 = 1

In this specification, the effect does not depend on value of 𝐷2𝑖

To allow the effect of changing 𝐷1𝑖 to depend on 𝐷2𝑖, include the
interaction term 𝐷1𝑖 × 𝐷2𝑖 as a separate regressor:

𝑌𝑖 = 𝛽0 + 𝛽1𝐷1𝑖 + 𝛽2𝐷2𝑖 + 𝛽3(𝐷1𝑖 × 𝐷2𝑖) + 𝑢𝑖

120 / 133

Interpreting the coefficients

Compare the PRF when 𝐷1𝑖 changes from 0 to 1
while 𝐷2𝑖 is fixed at 𝑞 ∈ {0, 1}

E[𝑌𝑖|𝐷1𝑖 = 0,𝐷2𝑖 = 𝑞] = 𝛽0 + 𝛽2𝑞
E[𝑌𝑖|𝐷1𝑖 = 1,𝐷2𝑖 = 𝑞] = 𝛽0 + 𝛽1 + 𝛽2𝑞 + 𝛽3𝑞

and their difference
E[𝑌𝑖|𝐷1𝑖 = 1,𝐷2𝑖 = 𝑞] − E[𝑌𝑖|𝐷1𝑖 = 0,𝐷2𝑖 = 𝑞] = 𝛽1 + 𝛽3𝑞

The effect of 𝐷1𝑖 now depends on the value 𝑞 ∈ {0, 1} of 𝐷2𝑖

Interpretation of 𝛽3:
increment to the effect of 𝐷1𝑖 on 𝑌𝑖 when 𝐷2𝑖 = 1

121 / 133

For illustration, define the following two dummy variables

𝐻𝑖𝑆𝑇𝑅 ∶=
⎧⎪
⎨⎪⎩

1 if 𝑠𝑡𝑟 ≥ 20
0 if 𝑠𝑡𝑟 < 20

and

𝐻𝑖𝐸𝐿 ∶=
⎧⎪
⎨⎪⎩

1 if 𝑒𝑙_𝑝𝑐𝑡 ≥ 10
0 if 𝑒𝑙_𝑝𝑐𝑡 < 10

You want to estimate

𝑡𝑒𝑠𝑡𝑠𝑐𝑟𝑖 = 𝛽0 + 𝛽1𝐻𝑖𝑆𝑇𝑅𝑖 + 𝛽2𝐻𝑖𝐸𝐿𝑖 + 𝛽3(𝐻𝑖𝑆𝑇𝑅𝑖 × 𝐻𝑖𝐸𝐿𝑖) + 𝑢𝑖

122 / 133

Here is how you would program this in Python:
Python Code (output edited)

> df['Hi_str'] = df.str.apply(lambda x: 1 if x >= 20 else 0)
> df['Hi_el_pct'] = df.el_pct.apply(lambda x: 1 if x >= 10 else 0)

> formula = 'testscr ~ Hi_str * Hi_el_pctHi_str * Hi_el_pct'
> reg7 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg7.summary())

OLS Regression Results
==

coef std err z P>|z| [0.025 0.975]
--
Intercept 664.1433 1.388 478.459 0.000 661.423 666.864
Hi_str -1.9078 1.932 -0.987 0.323 -5.695 1.879
Hi_el_pct -18.1629 2.346 -7.742 0.000 -22.761 -13.565
Hi_str:Hi_el_pct -3.4943 3.121 -1.120 0.263 -9.612 2.623
==
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

• Effect of 𝐻𝑖𝑆𝑇𝑅𝑖 when 𝐻𝑖𝐸𝐿𝑖 = 0 is −1.9
• Effect of 𝐻𝑖𝑆𝑇𝑅𝑖 when 𝐻𝑖𝐸𝐿𝑖 = 1 is −1.9 − 3.5 = −5.4
• Class size reduction is estimated to have a bigger effect when
the percent of English learners is large

• However, the interaction term is not statistically significant

Hi_str * Hi_el_pct

123 / 133

Interactions Between a Continuous and a Binary Regressor

Baseline model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐷𝑖 + 𝑢𝑖,

where 𝐷𝑖 is binary and 𝑋𝑖 is continuous

𝛽1 is the effect on 𝑌𝑖 of changing 𝑋𝑖

In this specification, the effect does not depend on value of 𝐷𝑖

To allow the effect of changing 𝑋𝑖 to depend on 𝐷𝑖, include the
interaction term 𝐷𝑖 × 𝑋𝑖 as a separate regressor:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐷𝑖 + 𝛽3(𝐷𝑖 × 𝑋𝑖) + 𝑢𝑖

124 / 133

Interpreting the coefficients
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐷𝑖 + 𝛽3(𝐷𝑖 × 𝑋𝑖) + 𝑢𝑖

Compare the PRF when 𝑋 changes from 𝑥 to 𝑥 + 1
while 𝐷𝑖 is fixed at 𝑞 ∈ {0, 1}

E[𝑌𝑖|𝑋𝑖 = 𝑥,𝐷𝑖 = 𝑞] = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑞 + 𝛽3(𝑞 × 𝑥)
E[𝑌𝑖|𝑋𝑖 = 𝑥 + 1,𝐷𝑖 = 𝑞] = 𝛽0 + 𝛽1(𝑥 + 1)

+ 𝛽2𝑞 + 𝛽3(𝑞 × (𝑥 + 1))

and their difference
E[𝑌𝑖|𝑋𝑖 = 𝑥 + 1,𝐷𝑖 = 𝑞] − E[𝑌𝑖|𝑋𝑖 = 𝑥,𝐷𝑖 = 𝑞] = 𝛽1 + 𝛽3𝑞

The effect of 𝑋 now depends on the value 𝑞 ∈ {0, 1} of 𝐷𝑖

Interpretation of 𝛽3: increment to effect of 𝑋𝑖 on 𝑌𝑖 when 𝐷𝑖 = 1

125 / 133

You could view these two cases as two different PRFs

• the intercept is different

• the slope is different

To see this, just rewrite

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐷𝑖 + 𝛽3(𝐷𝑖 × 𝑋𝑖) + 𝑢𝑖
= (𝛽0 + 𝛽2𝐷𝑖) + (𝛽1 + 𝛽3𝐷𝑖)𝑋𝑖 + 𝑢𝑖,

To make this more explicit, set 𝐷𝑖 = 0 to obtain

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖

and set 𝐷𝑖 = 1 to obtain

𝑌𝑖 = (𝛽0 + 𝛽2) + (𝛽1 + 𝛽3)𝑋𝑖 + 𝑢𝑖

126 / 133

Python Code (output edited)
> formula = 'testscr ~ str * Hi_el_pct'str * Hi_el_pct'
> reg8 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg8.summary())

OLS Regression Results
===

coef std err z P>|z| [0.025 0.975]

Intercept 682.2458 11.868 57.487 0.000 658.985 705.506
str -0.9685 0.589 -1.644 0.100 -2.123 0.186
Hi_el_pct 5.6391 19.515 0.289 0.773 -32.609 43.887
str:Hi_el_pct -1.2766 0.967 -1.320 0.187 -3.172 0.619
===
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

• Effect of 𝑠𝑡𝑟𝑖 when 𝐻𝑖𝐸𝐿𝑖 = 0 is −0.97
• Effect of 𝑠𝑡𝑟𝑖 when 𝐻𝑖𝐸𝐿𝑖 = 1 is −0.97 − 1.28 = −2.25
• Class size reduction is estimated to have a bigger effect when
the percent of English learners is large

• But which effects are significant?

str * Hi_el_pct'

127 / 133

Comparing the two PRFs:
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖 𝐷𝑖 = 0
𝑌𝑖 = (𝛽0 + 𝛽2) + (𝛽1 + 𝛽3)𝑋𝑖 + 𝑢𝑖 𝐷𝑖 = 1

Three hypotheses we could look at

1. The two PRFs are the same: 𝛽2 = 0 and 𝛽3 = 0

Python Code
> ftest = reg8.f_test('str:Hi_el_pct = Hi_el_pct = 0')
> print(ftest)

<F test: F=89.93943806333414, p=3.455817933875603e-33, df_denom=416, df_num=2>

Rejected
2. The two PRFs have the same slope: 𝛽3 = 0

Coefficient on the interaction term has 𝑡-statistic of -1.32
Not rejected

3. The two PRFs have the same intercept: 𝛽2 = 0
Coefficient on 𝐻𝑖𝐸𝐿 has 𝑡-statistic of 0.289
Not rejected 128 / 133

Interactions Between two Continuous Regressors

Baseline model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝑢𝑖,

where 𝑋1𝑖, 𝑋2𝑖 are both continuous

𝛽1 is the effect on 𝑌𝑖 of changing 𝑋1𝑖

In this specification, the effect does not depend on value of 𝑋2𝑖

To allow the effect of changing 𝑋1𝑖 to depend on 𝑋2𝑖, include the
interaction term 𝑋1𝑖 × 𝑋2𝑖 as a separate regressor:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3(𝑋1𝑖 × 𝑋2𝑖) + 𝑢𝑖

129 / 133

Interpreting the coefficients
𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3(𝑋1𝑖 × 𝑋2𝑖) + 𝑢𝑖

Compare the PRF when 𝑋1𝑖 changes from 𝑥 to 𝑥 + 1
while 𝑋2𝑖 is fixed at 𝑞 ∈ ℝ

E[𝑌𝑖|𝑋1𝑖 = 𝑥,𝑋2𝑖 = 𝑞] = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑞 + 𝛽3(𝑞 × 𝑥)
E[𝑌𝑖|𝑋1𝑖 = 𝑥 + 1,𝑋2𝑖 = 𝑞] = 𝛽0 + 𝛽1(𝑥 + 1)

+ 𝛽2𝑞 + 𝛽3(𝑞 × (𝑥 + 1))

and their difference
E[𝑌𝑖|𝑋1𝑖 = 𝑥 + 1,𝑋2𝑖 = 𝑞] − E[𝑌𝑖|𝑋1𝑖 = 𝑥,𝑋2𝑖 = 𝑞] = 𝛽1 + 𝛽3𝑞

The effect of 𝑋1𝑖 now depends on the value 𝑞 ∈ ℝ of 𝑋2𝑖

Interpretation of 𝛽3: increment to effect of 𝑋1𝑖 on 𝑌𝑖 when 𝑋2𝑖 = 𝑞

130 / 133

Python Code (output edited)
> formula = 'testscr ~ str * el_pct'str * el_pct'
> reg9 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg9.summary())

OLS Regression Results
==

coef std err z P>|z| [0.025 0.975]
--
Intercept 686.3385 11.759 58.365 0.000 663.291 709.386
str -1.1170 0.588 -1.901 0.057 -2.269 0.034
el_pct -0.6729 0.374 -1.799 0.072 -1.406 0.060
str:el_pct 0.0012 0.019 0.063 0.950 -0.035 0.037
==
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

str * el_pct'

131 / 133

Interpreting the results

Estimated effect of class size reduction is nonlinear because the size
of the effect itself depends on 𝑒𝑙_𝑝𝑐𝑡𝑖

el_pct Slope
value location of str
1.94 25th percentile -1.12
8.85 median -1.11
23.00 75th percentile -1.09
43.92 90th percentile -1.07

For example, at the median of 𝑒𝑙_𝑝𝑐𝑡𝑖 (8.85% are English learners), the
effect of 𝑠𝑡𝑟𝑖 on test scores is −1.11

The effect of 𝑠𝑡𝑟𝑖 is decreasing in 𝑒𝑙_𝑝𝑐𝑡𝑖 (absolute value)

But the differences do not seem large

132 / 133

Checking statistical significance

• Interaction term is not significant at 5% level

• Neither is the coefficient on 𝑠𝑡𝑟
• But

Python Code
> ftest = reg9.f_test('str:el_pct = str = 0')
> print(ftest)

<F test: F=3.8896634079301577, p=0.021200264867197494, df_denom=416, df_num=2>

Rejected

• Yet another example in which one should not conduct a joint
hypothesis by looking at the coefficients individually

• An 𝐹-test is required

133 / 133

