Multiple Regression Model

Juergen Meinecke

Functional Form Specifications

Dummy Variable Trap

Let's say you have available G dummy variables that together are
mutually exclusive and exhaustive of the population

Example: smoker with G =2

Two dummies:

- smoker equal 1if person is a smoker
(zero otherwise)

- nonsmoker equal 1if person is a non-smoker
(zero otherwise)

If you are interested in the association between smoking and
birthweight then you may want to consider the following three
specifications

- birthweight = gy + ysmoker + u;
- birthweight = gy + fonon-smoker + u;

- birthweight = B, + fysmoker + gnon-smoker + u;

Regression with both smoker and nonsmoker will throw an error
(that's the dummy variable trap)

Python Code (output edited)

> regl = smf.ols('birthweight ~ smoker', data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> regl.summary()

coef std err z P>|z| [0.025 0.975]
Intercept 3432.0600 11.891 288.638 0.000 3408.755 3455.365
smoker -253.2284 26.810 -9.445 0.000 -305.776 -200.681

> df['nonsmoker'] = 1 - df.smoker

> reg2 = smf.ols('birthweight ~ nonsmoker', data=df, missing='drop')

> .fit(cov_type="HC1', use_t=False)
> reg2.summary()

Intercept 3178.8316 24.029 132.289 0.000 SN 73 3225.928
nonsmoker 253.2284 26.810 9. 445 0.000 200.681 305.776

In each regression, the group represented by ‘zero’ is the so-called
benchmark or default group (represented by the constant term)

Absolute value of slope coefficient is identical

Example: number of prenatal visits with G = 4
Four dummies
- tripre0 equal 1if never went for prenatal health visits
(presumably a problematic group)

- triprel equal 1if first prenatal health visit in 1st trimester
(presumably the most common group)

- tripre2 equal 1if first prenatal health visit in 2nd trimester

- tripre3 equal 1if first prenatal health visit in 3rd trimester
We've just learned: only need to use a subset of three dummies
Which subset should we use?

It doesn’t matter: as long as we use any three, we are not throwing
out any information

However: the unused dummy dummy implicitly defines the
benchmark group

From the week 8 lab: G = 4, what are the benchmark groups here:
Python Code (output edited)

benchmark: first prenatal health visit in 1st trimester

formula_regl = 'birthweight ~ smoker + alcohol + tripre® + tripre2 + tripre3'

regl = smf.ols(formula_regl, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
regl.summary()

coef std err z P>|z| [0.025 0.975]
Intercept 3454.5493 12.482 276.770 0.000 3430.086 3479.013
smoker -228.8476 26.549 -8.620 0.000 -280.882 -176.813
alcohol -15.1000 69.703 -0.217 0.828 =15l 75 121.516
tripre@ -697.9687 146.579 -4.762 0.000 -985.258 -410.680
tripre2 -100.8373 BINS58) -3.196 0.001 -162.680 -38.995
tripre3 =136-,2553 67.696 -2.023 0.043 -269.637 -4.274

> # benchmark: never went for prenatal health visit
> formula_reg2 = 'birthweight ~ smoker + alcohol + triprel + tripre2 + tripre3'
> reg2 = smf.ols(formula_reg2, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> reg2.summary()

coef std err z P>|z]|
Intercept 2756.5806 146.077 18.871 0.000 2470.274 3042.887
smoker -228.8476 26.549 -8.620 0.000 -280.882 -176.813
alcohol -15.1000 69.703 -0.217 0.828 =15l 75 121.516
triprel 697.9687 146.579 4.762 0.000 410.680 985.258
tripre2 597 1315) 149.102 4.005 0.000 304.897 889.366
tripre3 561.0135 160.945 3.486 0.000 245.566 876.461

Multiple Regression Model

Juergen Meinecke

Functional Form Specifications

Polynomials in X

Consider the following multiple regression model:
Y; = Bo +B1Xi + Bo X7 + ... + B, X[+ 1

(Note: for simplicity we omit other regressors)

This is just the linear multiple regression model — except that the
regressors are powers of X

Estimation, hypothesis testing, etc. proceeds as in the multiple
regression model using OLS

The coefficients are difficult to interpret, but the regression function
itself is interpretable

We will illustrate the use of polynomials using the textbook’s data on
test scores and student teacher ratios

Here we focus on the following two variables only

- testscr; is average test score in school district i

- avginc; is the average income in school district i
(thousands of dollars per capita)

Quadratic specification:

testscr; = By + Bravgine; + Bravgine? + u;

Cubic specification:

testscr; = By + Bravginc; + Pravginc? + fzavginc? + u;

Estimation of the quadratic specification in Python

Python Code (output edited)

> formula = 'testscr ~ avginc + I(avginc##2)'
> regl = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(regl.summary())

OLS Regression Results

Intercept 607.3017 2.902 209.288 0.000 601.614 612.989
avginc 3.8510 0.268 14.364 0.000 3.326 4.376
I(avginc #* 2) -0.0423 0.005 -8.851 0.000 -0.052 -0.033

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Compare the predicted values between linear and quadratic
specification

Test score

740 . ,
Linear regression

720
700

680 . .
Quadratic regression

660 —

640

620 - oW

600 - £ ! ! | L I
0 10 20 30 40 50 60

District income
(thousands of dollars)

How to interpret the estimated PRF?

Estimated PRF is
testscr; = 607 + 3.85avginc; — 0.042avginc?

Predicted change in testscr; for a change in avginc; from $5,000 to
$6,000 per capita (note: avging; is in thousands of dollars):

Atestscr; = 607 +3.85 - 6 — 0.0423 - 67—
(607 +3.85-5 - 0.0423 - 5%)
=3.4

Predicted effects for different values of avginc;

Aavginc Atestscr
from $5,000 to $6,000 3.4
from $25,000 to $26,000 1.7
from $45,000 to $46,000 0.0

The effect of changing avginc; on testscr; is decreasing in avginc;

The second derivative is negative (that's because the coefficient
estimate on the quadratic term is negative)

Caution: do not extrapolate outside the range of the data

Estimation of the cubic specification in Python

Python Code (output edited)

> formula = 'testscr ~ avginc + I(avginc*#*2) + I(avginc**3)'
> reg2 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg2.summary())

OLS Regression Results

coef std err z P>|z| [0.025 0.975]
Intercept 600.0790 5.102 117.615 0.000 590.079 610.079
avginc 5.0187 0.707 7.095 0.000 3.632 6.405
I(avginc *+ 2) -0.0958 0.029 -3.309 0.001 -0.153 -0.039
I(avginc #+ 3) 0.0007 0.000 1.975 0.048 5.25e-06 0.001

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Testing the null hypothesis of linearity, against the alternative that
the population regression is quadratic and/or cubic, that is, it is a
polynomial of degree up to 3:

H, : population coefficients on avginc2 and avginc3 both 0

H; : at least one of these coefficients is nonzero

Python Code

> ftest = reg2.f_test('I(avginc ** 2) = I(avginc ** 3) = 0')
> print(ftest)
tiny p-value

<F test: F=37.69077411568449, p=9.042596378792848e-16, df_denom=416, df_num=2>

The hypothesis that the population regression is linear is rejected at
the 5% significance level against the alternative that it is a
polynomial of (up to) third order

Multiple Regression Model

Juergen Meinecke

Functional Form Specifications

Logarithmic functions of X or Y

Using logarithmic transformations of both the dependent and
independent variables can be useful when estimating coefficients

Using the student test score example, let's focus on two variables:

- Y;: test score in school district i

- X;: average income in school district i
(this is a proxy for socio economic status of the district)

Let's look at the simple regression model
Yi=po+pXi+u

We estimate ; by running a regression of Y; on X;
But what do we estimate when instead we
- run a regression of InY; on X;?

- run a regression of Y; on In X;?

- run a regression of InY; on In X;?

The logarithm has useful features based on calculus

Compare the independent variable at two values x; and x;
(it works the same for the dependent variable)

Starting at xy, you change the dependent variable by Ax := x; — xg
Define the following: ¥; = In(x;) and Xy = In(xy)
The corresponding change in the logarithm captures:

AX = X — Xy = In(x7) — In(xg) = In(xg + Ax) — In(xp)

Xo + Ax Ax Ax
=ln|—— | =In|1+ — | ® — = percentage change
X0 X0 X0

The difference in the logarithmic values of x; and x; is approximately
equal to the percentage change between x; and xg

The difference in logarithms approximates percentage changes

For example

Xg = 50 5{0 = h’l(XO) =391
X1 = 52 561 = ln(xl) =3.95
Ax B
= x—=4% = Ax=0.04
0

Another example:
If Ax = 0.07 then you know that x increased by 7%

In a few slides we will have:
Ax = 1 which means that x increased by 100%

(Aside: the log-approximation works best when the change from x,
to x7 is small)

Back to the regression model

You create log-versions of both X; and Y;
.)Z- = IHXI'
. ?1' =1In Yi

Now compare the following four specifications:

Specification Population regression function
(1) linear-linear Yi=po+p1Xi
(2) linear-log Y; = o + B1X;
(3) log-linear Yi = By + X
(4) log-log Yi =B+ B1X;

The interpretation of the slope coefficient g; differs in each case

The generic interpretation of the slope coefficient By is:
By how much does the dependent variable change, on average, when
the independent variable changes by one unit?

What does this mean in the different specifications?

1) pi= 2—2
2) p1= %
®) b= i—?
@ pi= i—;

therefore

therefore

therefore

therefore

AX;=1 = AY;=p
X up by 1unit, Y up by ; units
AX;=1 = AY;=p
X up by 100%, Y up by By units
AX;=1 = AY; =,
X up by 1unit, Y up by 100 - 1%
AX;=1 = AY;=p;

X up by 100%, Y up by 100 - 1%

Let's illustrate specifications (2), (3), and (4) in Python...

Linear-log specification
Python Code (output edited)

import numpy as np
formula = 'testscr ~ I(np.log(avginc))’
reg3 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)

>
>
>
> print(reg3.summary())

OLS Regression Results

Intercept 557.8323 3.840 145.271 0.000 550.306 565.358
I(np.log(avginc)) 36.4197 1.397 26.071 0.000 33.682 39.158

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Interpretation:

a 100% increase in avginc is associated with an increase in
testscr by 36.42 points (the measurement units of testscr) on
average

or alternatively:
a 1% increase in avginc is associated with an increase in testscr
by 0.3642 points on average

Log-linear specification

Python Code (output edited)

> formula = 'I(np.log(testscr)) ~ avginc'
> regh = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(regh.summary())

OLS Regression Results

coef std err z P>|z| [0.025 0.975]
Intercept 6.4394 0.003 2225.210 0.000 6.434 6.445
avginc 0.0028 0.000 16.244 0.000 0.003 0.003

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Interpretation:
an increase by $1in avginc will increase testscr by 0.28% on
average

Log-log specification
Python Code (output edited)
> formula = 'I(np.log(testscr)) ~ I(np.log(avginc))'
> reg5 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)

> print(reg5.summary())

OLS Regression Results

coef std err z P>|z| [0.025 0.975]
Intercept 6.3363 0.006 1069.501 0.000 6.325 6.348
I(np.log(avginc)) 0.0554 0.002 25.841 0.000 0.051 0.060

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Interpretation:
an increase by 100% in avginc will increase testscr by 5.5% on

average

or alternatively:
an increase by 1% in avginc will increase testscr by 0.055% on

average

The coefficient f; measures the elasticity of Y with respect to X

Multiple Regression Model

Juergen Meinecke

Functional Form Specifications

Interaction Terms

Interactions Between two Binary Regressors

We will illustrate the use of interaction terms using the textbook’s
data on test scores and student teacher ratios

Consider the following multiple regression model:
testscr; = By + Pistr; + Pael_pct; + u;,

where

- testscr; is average test score in school district i
- str; is average student-teacher ratio in school district i

- el_pct; is percent of English learners in school district i
(remember, this data set is from California where many students
are native Spanish speakers)

When you run this regression in Python, this is what you get:

Python Code (output edited)

> formula = 'testscr ~ str + el_pct'
> reg6 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg6.summary())

OLS Regression Results

Intercept 686.0322 8.728 78.599 0.000 668.925 703.139
str -1.1013 0.433 -2.544 0.011 -1.950 -0.253
el_pct -0.6498 0.031 -20.939 0.000 -0.711 -0.589

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Interpreting the results

- If district i could decrease str; by one unit while holding el_pct;
constant, it can expect an increase in average test scores of 1.10

- If district i could decrease el_pct; by one percentage point while
holding str; constant, it can expect an increase in average test
scores of 0.65

- Both effects a statistically significant at 5% level

Perhaps a class size reduction is more effective in some
circumstances than in others

Perhaps the effect of student-teacher ratio on test scores varies with
the percentage of English learners

This would be the case, for example, if English learners benefit
disproportionately from smaller class sizes (and therefore lower
student-teacher ratios)

. Atest.
More technically, ——

might depend on el_pct

More generally, mlght depend on X,

How to model such interactions between X; and X,?

Baseline model

Y; = Bo + B1D1i + BaDyi + u;,

where Dy; and D,; are binary regressors (dummy variables)
B is the effect on Y; of changing Dy; =0to Dy; =1
In this specification, the effect does not depend on value of D,;

To allow the effect of changing Dy; to depend on D,;, include the
interaction term Dy; X Dy; as a separate regressor:

Y; = Bo + B1D1i + BaDy;i + B3(D1; X Do) + u;

Interpreting the coefficients

Compare the PRF when Dy; changes from 0 to 1
while Dy; is fixed at g € {0, 1}

E[YilD1; = 0, Dy = q] = o + Bog
E[Y;ID1; = 1,Dy; = g1 = fo + P1 + P2q + B3

and their difference
E[YilDy; = 1, Dy = q] = E[Yi|Dy; = 0,Dy; = q] = p1 + B39

The effect of Dy; now depends on the value g € {0, 1} of D,;

Interpretation of Bs:
increment to the effect of Dy; on Y; when Dy; =1

For illustration, define the following two dummy variables

] 1 ifstr>20
HiSTR =
0 ifstr<20

and

) 1 ifel_pct > 10
HiEL :=
0 ifel_pct <10

You want to estimate

testscri = ‘80 alx ﬁlHISTRl ar ﬁQHlELZ ar ﬁ3(HZSTR1 X HlELl) + u;

Here is how you would program this in Python:
Python Code (output edited)

> df['Hi_str'] = df.str.apply(lambda x: 1 if x >= 20 else 0)
> df['Hi_el_pct'] = df.el_pct.apply(lambda x: 1 if x >= 10 else 0)

> formula = 'testscr ~ Hi_str * Hi_el_pct'
> reg7 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg7.summary())

OLS Regression Results

coef std err z P>|z| [0.025 0.975]
Intercept 664.1433 1.388 478.459 0.000 661.423 666.864
Hi_str -1.9078 1.932 -0.987 0.323 -5.695 1.879
Hi_el_pct -18.1629 2.346 TR 0.000 -22.761 -13.565
Hi_str:Hi_el_pct -3.4943 3.121 -1.120 0.263 -9.612 2.623

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

- Effect of HiSTR; when HiEL; =0 is —-1.9

- Effect of HiSTR; when HiEL; =1is -1.9-3.5=-5.4

- Class size reduction is estimated to have a bigger effect when
the percent of English learners is large

- However, the interaction term is not statistically significant

Interactions Between a Continuous and a Binary Regressor

Baseline model

Y; = Bo+ p1Xi + D; + u,

where D; is binary and X; is continuous
B1 is the effect on Y; of changing X;
In this specification, the effect does not depend on value of D;

To allow the effect of changing X; to depend on D;, include the
interaction term D; X X; as a separate regressor:

Y; = Bo + p1Xi + BoD; + B3(D; X X;) + u;

Interpreting the coefficients
Y =Bo+B1Xi + Di + B3(Di X X;) + u;

Compare the PRF when X changes from x to x + 1
while D; is fixed at g € {0, 1}
E[YilX; = x,D; = gl = Bo + p1x + P2g + B3(q X %)
EYilX; =x+1,D; =ql = o+ p1(x + 1)

+Bog + B3(g X (x + 1))

and their difference
E[YilX; =x+1,D; = q] - E[YilX; = x,D; = q] = B1 + B39

The effect of X now depends on the value g € {0, 1} of D;

Interpretation of B3: increment to effect of X; on Y; when D; =1

You could view these two cases as two different PRFs

- the intercept is different
- the slope is different
To see this, just rewrite
Y; = Bo + B1Xi + BoD; + B3(D; X X;) + u;
= (Bo + PaDi) + (B1 + BsDi)X; + uy,

To make this more explicit, set D; = 0 to obtain

Yi = Bo+p1Xi +u

and set D; = 1 to obtain

Yi = (Bo+B2) + (B + B3)X; + u

Python Code (output edited)

> formula = 'testscr ~ str * Hi_el_pct'
> reg8 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg8.summary())

OLS Regression Results

coef std err z P>z| [0.025 0.975]

Intercept 682.2458 11.868 57.487 0.000 658.985 705.506
str -0.9685 0.589 -1.644 0.100 -2.123 0.186
Hi_el_pct 5.6391 19.515 0.289 0.773 -32.609 43.887
str:Hi_el_pct -1.2766 0.967 -1.320 0.187 -3.172 0.619

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

- Effect of str; when HiEL; =0 is —0.97
- Effect of str; when HiEL; = 1 is —0.97 — 1.28 = -2.25

- Class size reduction is estimated to have a bigger effect when
the percent of English learners is large

- But which effects are significant?

Comparing the two PRFs:
Yi=Bo+pXi+u D;=0

Yi = (Bo +B2) + (B1 +)X +u D;=1

Three hypotheses we could look at

1. The two PRFs are the same: g, =0 and 3 =0
Python Code

> ftest = reg8.f_test('str:Hi_el_pct = Hi_el_pct = 0')
> print(ftest)

<F test: F=89.93943806333414, p=3.455817933875603e-33, df_denom=416, df_num=2>

Rejected

2. The two PRFs have the same slope: 3 =0
Coefficient on the interaction term has t-statistic of -1.32
Not rejected

3. The two PRFs have the same intercept: g, =0
Coefficient on HiEL has t-statistic of 0.289
Not rejected

Interactions Between two Continuous Regressors

Baseline model

Y = Bo + p1Xqi + PoXoi +uy,

where Xy;, X,; are both continuous
B is the effect on Y; of changing Xy;
In this specification, the effect does not depend on value of Xj;

To allow the effect of changing X;; to depend on X,;, include the
interaction term Xy; X X,; as a separate regressor:

Y; = Bo + B1Xai + BoXoi + B3(Xqi X Xpy) +u;

Interpreting the coefficients
Yi = Bo + B1Xai + PoXoi + B3(Xni X Xoi) + u

Compare the PRF when X;j; changes from x to x + 1
while Xy; is fixed atg e R
E[YilX1; = x, Xpi = q] = Bo + P1x + Pag + B3(q X %)
LY X1 =x+1,Xp =gl = o+ pr(x+1)

+Bog + B3(X (x + 1))

and their difference
E[YilX3; = x+ 1, Xy = q] = E[YiIXq; = x, Xp; = q] = B1 + B39

The effect of X3; now depends on the value g € R of Xy;

Interpretation of B3: increment to effect of Xy; on Y; when X, = ¢

Python Code (output edited)

> formula = 'testscr ~ str * el_pct'
> reg9 = smf.ols(formula, data=df, missing='drop').fit(cov_type="HC1', use_t=False)
> print(reg9.summary())

OLS Regression Results

coef std err z P>|z| [0.025 0.975]
Intercept 686.3385 11.759 58.365 0.000 663.291 709.386
str -1.1170 0.588 -1.901 0.057 -2.269 0.034
el_pct -0.6729 0.374 -1.799 0.072 -1.406 0.060
striel_pct 0.0012 0.019 0.063 0.950 -0.035 0.037

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Interpreting the results

Estimated effect of class size reduction is nonlinear because the size
of the effect itself depends on el_pct;

el_pct Slope
value location of str
1.94 25th percentile -1.12
8.85 median -1.11
23.00 75th percentile -1.09
43.92 90th percentile -1.07

For example, at the median of el_pct; (8.85% are English learners), the
effect of str; on test scores is —1.11

The effect of str; is decreasing in el_pct; (absolute value)

But the differences do not seem large

Checking statistical significance

- Interaction term is not significant at 5% level
- Neither is the coefficient on str
- But

Python Code

> ftest = reg9.f_test('str:el_pct = str = 0')
> print(ftest)

<F test: F=3.8896634079301577, p=0.021200264867197494, df_denom=416, df_num=2>

Rejected
- Yet another example in which one should not conduct a joint
hypothesis by looking at the coefficients individually

- An F-test is required

