Multiple Regression Model

Juergen Meinecke

Roadmap

Functional Form Specifications

Dummy Variable Trap

Let's say you have available G dummy variables that together are mutually exclusive and exhaustive of the population

Example: smoker with $G=2$
Two dummies:

- smoker equal 1 if person is a smoker (zero otherwise)
- nonsmoker equal 1 if person is a non-smoker (zero otherwise)

If you are interested in the association between smoking and birthweight then you may want to consider the following three specifications

- birthweight $=\beta_{0}+\beta_{1}$ smoker $+u_{i}$
- birthweight $=\beta_{0}+\beta_{2}$ non-smoker $+u_{i}$
- birthweight $=\beta_{0}+\beta_{1}$ smoker $+\beta_{2}$ non-smoker $+u_{i}$

Regression with both smoker and nonsmoker will throw an error (that's the dummy variable trap)

Python Code (output edited)

```
> reg1 = smf.ols('birthweight ~ smoker', data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> reg1.summary()
==================================================================================
    coef std err z P>|z| [0.025 0.975]
\begin{tabular}{lllllll} 
Intercept & 3432.0600 & 11.891 & 288.638 & 0.000 & 3408.755 & 3455.365
\end{tabular}
smoker -253.2284 26.810 -9.445 0.000 -305.776 -200.681
=================================================================================
> df['nonsmoker'] = 1 - df.smoker
> reg2 = smf.ols('birthweight ~ nonsmoker', data=df, missing='drop')
                            .fit(cov_type='HC1', use_t=False)
> reg2.summary()
================================================================================
    coef std err z P>|z| [0.025 0.975]
\begin{tabular}{lrrrrrr} 
Intercept & 3178.8316 & 24.029 & 132.289 & 0.000 & 3131.735 & 3225.928
\end{tabular}
\begin{tabular}{llllll} 
nonsmoker & 253.2284 & 26.810 & 9.445 & \(0.000 \quad 200.681 \quad 305.776\)
\end{tabular}
```

In each regression, the group represented by 'zero' is the so-called benchmark or default group (represented by the constant term)

Absolute value of slope coefficient is identical

Example: number of prenatal visits with $G=4$
Four dummies

- tripre0 equal 1 if never went for prenatal health visits (presumably a problematic group)
- tripre1 equal 1 if first prenatal health visit in 1st trimester (presumably the most common group)
- tripre2 equal 1 if first prenatal health visit in 2nd trimester
- tripre3 equal 1 if first prenatal health visit in 3rd trimester

We've just learned: only need to use a subset of three dummies
Which subset should we use?
It doesn't matter: as long as we use any three, we are not throwing out any information

However: the unused dummy dummy implicitly defines the benchmark group

From the week 8 lab: $G=4$, what are the benchmark groups here:

Python Code (output edited)

```
> # benchmark: first prenatal health visit in 1st trimester
> formula_reg1 = 'birthweight ~ smoker + alcohol + tripre0 + tripre2 + tripre3'
> reg1 = smf.ols(formula_reg1, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> reg1.summary()
===================================================================================
    coef std err
                            z P> z | 
                            [0.025 0.975]
\begin{tabular}{lrrrrrr} 
Intercept & 3454.5493 & 12.482 & 276.770 & 0.000 & 3430.086 & 3479.013 \\
smoker & -228.8476 & 26.549 & -8.620 & 0.000 & -280.882 & -176.813 \\
alcohol & -15.1000 & 69.703 & -0.217 & 0.828 & -151.715 & 121.516 \\
tripre0 & -697.9687 & 146.579 & -4.762 & 0.000 & -985.258 & -410.680 \\
tripre2 & -100.8373 & 31.553 & -3.196 & 0.001 & -162.680 & -38.995 \\
tripre3 & -136.9553 & 67.696 & -2.023 & 0.043 & -269.637 & -4.274
\end{tabular}
```


> \# benchmark: never went for prenatal health visit
> formula_reg2 = 'birthweight ~ smoker + alcohol + tripre1 + tripre2 + tripre3'
> reg2 = smf.ols(formula_reg2, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> reg2.summary()

coef std err $\quad z \quad P>|z| \quad[0.025 \quad 0.975]$

Intercept	2756.5806	146.077	18.871	0.000	2470.274	3042.887
smoker	-228.8476	26.549	-8.620	0.000	-280.882	-176.813
alcohol	-15.1000	69.703	-0.217	0.828	-151.715	121.516
tripre1	697.9687	146.579	4.762	0.000	410.680	985.258
tripre2	597.1315	149.102	4.005	0.000	304.897	889.366
tripre3	561.0135	160.945	3.486	0.000	245.566	876.461

[^0]Multiple Regression Model

Juergen Meinecke

Roadmap

Functional Form Specifications

Polynomials in X

Consider the following multiple regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\ldots+\beta_{r} X_{i}^{r}+u_{i}
$$

(Note: for simplicity we omit other regressors)
This is just the linear multiple regression model - except that the regressors are powers of X

Estimation, hypothesis testing, etc. proceeds as in the multiple regression model using OLS

The coefficients are difficult to interpret, but the regression function itself is interpretable

We will illustrate the use of polynomials using the textbook's data on test scores and student teacher ratios

Here we focus on the following two variables only

- testscr ${ }_{i}$ is average test score in school district i
- $\operatorname{avginc}_{i}$ is the average income in school district i (thousands of dollars per capita)

Quadratic specification:

$$
\text { testscr }_{i}=\beta_{0}+\beta_{1} \operatorname{avginc}_{i}+\beta_{2} \operatorname{avginc}_{i}^{2}+u_{i}
$$

Cubic specification:

$$
\text { testscr }_{i}=\beta_{0}+\beta_{1} \operatorname{avginc}_{i}+\beta_{2} \operatorname{avginc}_{i}^{2}+\beta_{3} \operatorname{avginc}_{i}^{3}+u_{i}
$$

Estimation of the quadratic specification in Python

Python Code (output edited)

```
> formula = 'testscr ~ avginc + I(avginc**2)
> reg1 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg1.summary())
OLS Regression Results
```



```
coef std err \(\quad z \quad P>|z| \quad[0.025 \quad 0.975]\)
\begin{tabular}{lrrrrrr} 
Intercept & 607.3017 & 2.902 & 209.288 & 0.000 & 601.614 & 612.989 \\
avginc & 3.8510 & 0.268 & 14.364 & 0.000 & 3.326 & 4.376 \\
I (avginc ** 2) & -0.0423 & 0.005 & -8.851 & 0.000 & -0.052 & -0.033
\end{tabular}
```


Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Compare the predicted values between linear and quadratic specification

Test score

How to interpret the estimated PRF?
Estimated PRF is

$$
{\widehat{\text { estscr }_{i}}=607+3.85 \text { avginc }_{i}-0.042 \text { avginc }_{i}^{2}}^{2}
$$

Predicted change in testscr r_{i} for a change in avginc from $\$ 5,000$ to $\$ 6,000$ per capita (note: avginc is in thousands of dollars):

$$
\begin{aligned}
\Delta \widehat{\text { testscr }}_{i}= & 607+3.85 \cdot 6-0.0423 \cdot 6^{2}- \\
& \left(607+3.85 \cdot 5-0.0423 \cdot 5^{2}\right) \\
= & 3.4
\end{aligned}
$$

Predicted effects for different values of avginc $_{i}$

Uavginc	Δ testscr
from $\$ 5,000$ to $\$ 6,000$	3.4
from $\$ 25,000$ to $\$ 26,000$	1.7
from $\$ 45,000$ to $\$ 46,000$	0.0

The effect of changing avginc on $_{i}$ testscr ${ }_{i}$ is decreasing in avginc ${ }_{i}$
The second derivative is negative (that's because the coefficient estimate on the quadratic term is negative)

Caution: do not extrapolate outside the range of the data

Estimation of the cubic specification in Python

Python Code (output edited)

```
> formula = 'testscr ~ avginc + I(avginc**2) + I(avginc**3)
> reg2 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg2.summary())
OLS Regression Results
```



```
coef std err \(\quad\) z \(P>|z| \quad[0.025 \quad 0.975]\)
\begin{tabular}{lrrrrrr} 
Intercept & 600.0790 & 5.102 & 117.615 & 0.000 & 590.079 & 610.079 \\
avginc & 5.0187 & 0.707 & 7.095 & 0.000 & 3.632 & 6.405 \\
I (avginc ** 2) & -0.0958 & 0.029 & -3.309 & 0.001 & -0.153 & -0.039 \\
I (avginc ** 3) & 0.0007 & 0.000 & 1.975 & 0.048 & \(5.25 e-06\) & 0.001
\end{tabular}
```

===2 Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Testing the null hypothesis of linearity, against the alternative that the population regression is quadratic and/or cubic, that is, it is a polynomial of degree up to 3 :
H_{0} : population coefficients on avginc2 and avginc3 both 0
H_{1} : at least one of these coefficients is nonzero

Python Code

```
> ftest = reg2.f_test('I(avginc ** 2) = I(avginc ** 3) = 0')
```

> print(ftest)
tiny p-value
<F test: $\mathrm{F}=37.69077411568449, \mathrm{p}=9.042596378792848 \mathrm{e}-16$, df _denom=416, df_num=2>

The hypothesis that the population regression is linear is rejected at the 5% significance level against the alternative that it is a polynomial of (up to) third order

Multiple Regression Model

Juergen Meinecke

Roadmap

Functional Form Specifications
Logarithmic functions of X or Y

Using logarithmic transformations of both the dependent and independent variables can be useful when estimating coefficients

Using the student test score example, let's focus on two variables:

- Y_{i} : test score in school district i
- X_{i} : average income in school district i (this is a proxy for socio economic status of the district)

Let's look at the simple regression model
$Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$

We estimate β_{1} by running a regression of Y_{i} on X_{i}
But what do we estimate when instead we

- run a regression of $\ln Y_{i}$ on X_{i} ?
- run a regression of Y_{i} on $\ln X_{i}$?
- run a regression of $\ln Y_{i}$ on $\ln X_{i}$?

The logarithm has useful features based on calculus
Compare the independent variable at two values x_{1} and x_{0} (it works the same for the dependent variable)

Starting at x_{0}, you change the dependent variable by $\Delta x:=x_{1}-x_{0}$
Define the following: $\tilde{x}_{1}=\ln \left(x_{1}\right)$ and $\tilde{x}_{0}=\ln \left(x_{0}\right)$
The corresponding change in the logarithm captures:

$$
\begin{aligned}
\Delta \tilde{x} & :=\tilde{x}_{1}-\tilde{x}_{0}=\ln \left(x_{1}\right)-\ln \left(x_{0}\right)=\ln \left(x_{0}+\Delta x\right)-\ln \left(x_{0}\right) \\
& =\ln \left(\frac{x_{0}+\Delta x}{x_{0}}\right)=\ln \left(1+\frac{\Delta x}{x_{0}}\right) \approx \frac{\Delta x}{x_{0}}=\text { percentage change }
\end{aligned}
$$

The difference in the logarithmic values of x_{1} and x_{0} is approximately equal to the percentage change between x_{1} and x_{0}

The difference in logarithms approximates percentage changes

For example

$$
\begin{aligned}
x_{0} & =50 & \tilde{x}_{0} & =\ln \left(x_{0}\right)=3.91 \\
x_{1} & =52 & \tilde{x}_{1} & =\ln \left(x_{1}\right)=3.95 \\
\Longrightarrow \frac{\Delta x}{x_{0}} & =4 \% & & \Longrightarrow \Delta \tilde{x}
\end{aligned}
$$

Another example:
If $\Delta \tilde{x}=0.07$ then you know that x increased by 7%
In a few slides we will have:
$\Delta \tilde{x}=1$ which means that x increased by 100%
(Aside: the log-approximation works best when the change from x_{0} to x_{1} is small)

Back to the regression model
You create log-versions of both X_{i} and Y_{i}

- $\widetilde{X}_{i}:=\ln X_{i}$
- $\widetilde{Y}_{i}:=\ln Y_{i}$

Now compare the following four specifications:

Specification
(1) linear-linear
(2) linear-log
(3) log-linear
(4) $\log -\log$

Population regression function

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i} \\
Y_{i} & =\beta_{0}+\beta_{1} \widetilde{X}_{i} \\
\widetilde{Y}_{i} & =\beta_{0}+\beta_{1} X_{i} \\
\widetilde{Y}_{i} & =\beta_{0}+\beta_{1} \widetilde{X}_{i}
\end{aligned}
$$

The interpretation of the slope coefficient β_{1} differs in each case
The generic interpretation of the slope coefficient β_{1} is:
By how much does the dependent variable change, on average, when the independent variable changes by one unit?

What does this mean in the different specifications?
(1) $\beta_{1}=\frac{\Delta Y_{i}}{\Delta X_{i}}$ therefore $\Delta X_{i}=1 \Longrightarrow \Delta Y_{i}=\beta_{1}$
X up by 1 unit, Y up by β_{1} units
(2) $\beta_{1}=\frac{\Delta Y_{i}}{\Delta \widetilde{X}_{i}}$ therefore $\Delta \widetilde{X}_{i}=1 \Longrightarrow \Delta Y_{i}=\beta_{1}$
X up by $100 \%, Y$ up by β_{1} units
(3) $\beta_{1}=\frac{\Delta \widetilde{Y}_{i}}{\Delta X_{i}}$ therefore $\Delta X_{i}=1 \Longrightarrow \Delta \widetilde{Y}_{i}=\beta_{1}$
X up by 1 unit, Y up by $100 \cdot \beta_{1} \%$
(4) $\beta_{1}=\frac{\Delta \widetilde{Y}_{i}}{\Delta \widetilde{X}_{i}}$ therefore $\Delta \widetilde{X}_{i}=1 \Longrightarrow \Delta \widetilde{Y}_{i}=\beta_{1}$
X up by $100 \%, Y$ up by $100 \cdot \beta_{1} \%$

Let's illustrate specifications (2), (3), and (4) in Python...

Linear-log specification

Python Code (output edited)

```
> import numpy as np
> formula = 'testscr ~ I(np.log(avginc))
> reg3 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg3.summary())
OLS Regression Results
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & coef & std err & z & P> \(|z|\) & [0.025 & \(0.975]\) \\
\hline Intercept & 557.8323 & 3.840 & 145.271 & 0.000 & 550.306 & 565.358 \\
\hline I(np.log(avginc) ) & 36.4197 & 1.397 & 26.071 & 0.000 & 33.682 & 39.158 \\
\hline
\end{tabular}
=======================================================================================
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)
```

Interpretation:
a 100\% increase in avginc is associated with an increase in
testscr by 36.42 points (the measurement units of testscr) on average
or alternatively:
a 1\% increase in avginc is associated with an increase in testscr
by 0.3642 points on average

Log-linear specification

Python Code (output edited)

```
> formula = 'I(np.log(testscr)) ~ avginc'
> reg4 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg4.summary())
OLS Regression Results
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & coef & std err & z & \(\mathrm{P}>|z|\) & [0.025 & \(0.975]\) \\
\hline Intercept & 6.4394 & 0.003 & 2225.210 & 0.000 & 6.434 & 6.445 \\
\hline avginc & 0.0028 & 0.000 & 16.244 & 0.000 & 0.003 & 0.003 \\
\hline
\end{tabular}
=================================================================================
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)
```

Interpretation:
an increase by $\$ 1$ in avginc will increase testscr by 0.28% on average

Log-log specification

Python Code (output edited)

```
> formula = 'I(np.log(testscr)) ~ I(np.log(avginc))'
> reg5 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg5.summary())
OLS Regression Results
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & coef & std err & z & P> \(|z|\) & [0.025 & \(0.975]\) \\
\hline Intercept & 6.3363 & 0.006 & 1069.501 & 0.000 & 6.325 & 6.348 \\
\hline I(np.log(avginc)) & 0.0554 & 0.002 & 25.841 & 0.000 & 0.051 & 0.060 \\
\hline
\end{tabular}
=========================================================================================
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)
```

Interpretation:
an increase by 100% in avginc will increase testscr by 5.5% on average
or alternatively:
an increase by 1% in avginc will increase testscr by 0.055% on average

The coefficient β_{1} measures the elasticity of Y with respect to X

Multiple Regression Model

Juergen Meinecke

Roadmap

Functional Form Specifications
Interaction Terms

Interactions Between two Binary Regressors

We will illustrate the use of interaction terms using the textbook's data on test scores and student teacher ratios

Consider the following multiple regression model:

$$
\operatorname{testscr}_{i}=\beta_{0}+\beta_{1} s t r_{i}+\beta_{2} e l_{-} p c t_{i}+u_{i},
$$

where

- testscr $_{i}$ is average test score in school district i
- $s t r_{i}$ is average student-teacher ratio in school district i
- el_pct ${ }_{i}$ is percent of English learners in school district i (remember, this data set is from California where many students are native Spanish speakers)

When you run this regression in Python, this is what you get:

Python Code (output edited)

```
> formula = 'testscr ~ str + el_pct'
> reg6 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg6.summary())
OLS Regression Results
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & coef & std err & z & \(P>|z|\) & [0.025 & \(0.975]\) \\
\hline Intercept & 686.0322 & 8.728 & 78.599 & 0.000 & 668.925 & 703.139 \\
\hline str & -1.1013 & 0.433 & -2.544 & 0.011 & -1.950 & -0.253 \\
\hline el_pct & -0.6498 & 0.031 & -20.939 & 0.000 & -0.711 & -0.589 \\
\hline
\end{tabular}
===============================================================================2
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)
```

Interpreting the results

- If district i could decrease $s t r_{i}$ by one unit while holding el_pct ${ }_{i}$ constant, it can expect an increase in average test scores of 1.10
- If district i could decrease $e l_{\text {_l }}$ pct t_{i} by one percentage point while holding str $_{i}$ constant, it can expect an increase in average test scores of 0.65
- Both effects a statistically significant at 5\% level

Perhaps a class size reduction is more effective in some circumstances than in others

Perhaps the effect of student-teacher ratio on test scores varies with the percentage of English learners

This would be the case, for example, if English learners benefit disproportionately from smaller class sizes (and therefore lower student-teacher ratios)
More technically, $\frac{\Delta t e s t s c r}{\Delta s t r}$ might depend on el_pct
More generally, $\frac{\Delta Y}{\Delta X_{1}}$ might depend on X_{2}
How to model such interactions between X_{1} and X_{2} ?

Baseline model

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+u_{i}
$$

where $D_{1 i}$ and $D_{2 i}$ are binary regressors (dummy variables)
β_{1} is the effect on Y_{i} of changing $D_{1 i}=0$ to $D_{1 i}=1$
In this specification, the effect does not depend on value of $D_{2 i}$
To allow the effect of changing $D_{1 i}$ to depend on $D_{2 i}$, include the interaction term $D_{1 i} \times D_{2 i}$ as a separate regressor:

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3}\left(D_{1 i} \times D_{2 i}\right)+u_{i}
$$

Interpreting the coefficients
Compare the PRF when $D_{1 i}$ changes from 0 to 1 while $D_{2 i}$ is fixed at $q \in\{0,1\}$

$$
\begin{aligned}
& \mathrm{E}\left[Y_{i} \mid D_{1 i}=0, D_{2 i}=q\right]=\beta_{0}+\beta_{2} q \\
& \mathrm{E}\left[Y_{i} \mid D_{1 i}=1, D_{2 i}=q\right]=\beta_{0}+\beta_{1}+\beta_{2} q+\beta_{3} q
\end{aligned}
$$

and their difference

$$
\mathrm{E}\left[Y_{i} \mid D_{1 i}=1, D_{2 i}=q\right]-\mathrm{E}\left[Y_{i} \mid D_{1 i}=0, D_{2 i}=q\right]=\beta_{1}+\beta_{3} q
$$

The effect of $D_{1 i}$ now depends on the value $q \in\{0,1\}$ of $D_{2 i}$
Interpretation of β_{3} :
increment to the effect of $D_{1 i}$ on Y_{i} when $D_{2 i}=1$

For illustration, define the following two dummy variables

$$
\text { HiSTR }:= \begin{cases}1 & \text { if } s t r \geqslant 20 \\ 0 & \text { if } s t r<20\end{cases}
$$

and

$$
H i E L:= \begin{cases}1 & \text { if } \text { el_pct } \geqslant 10 \\ 0 & \text { if } \text { el_pct }<10\end{cases}
$$

You want to estimate

$$
\text { testscr }_{i}=\beta_{0}+\beta_{1} H i S T R_{i}+\beta_{2} H i E L_{i}+\beta_{3}\left(H i S T R_{i} \times H i E L_{i}\right)+u_{i}
$$

Here is how you would program this in Python:

Python Code (output edited)

```
> df['Hi_str'] = df.str.apply(lambda x: 1 if x >= 20 else 0)
> df['Hi_el_pct'] = df.el_pct.apply(lambda x: 1 if x >= 10 else 0)
> formula = 'testscr ~ Hi_str * Hi_el_pct'
> reg7 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg7.summary())
OLS Regression Results
```



```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & coef & std err & z & \(P>|z|\) & [0.025 & \(0.975]\) \\
\hline Intercept & 664.1433 & 1.388 & 478.459 & 0.000 & 661.423 & 666.864 \\
\hline Hi_str & -1.9078 & 1.932 & -0.987 & 0.323 & -5.695 & 1.879 \\
\hline Hi_el_pct & -18.1629 & 2.346 & -7.742 & 0.000 & -22.761 & -13.565 \\
\hline Hi_str:Hi_el_pct & -3.4943 & 3.121 & -1.120 & 0.263 & -9.612 & 2.623 \\
\hline
\end{tabular}
```

- Effect of HiSTR_{i} when $\operatorname{HiEL}_{i}=0$ is -1.9
- Effect of HiSTR_{i} when $\mathrm{HiEL}_{i}=1$ is $-1.9-3.5=-5.4$
- Class size reduction is estimated to have a bigger effect when the percent of English learners is large
- However, the interaction term is not statistically significant

Interactions Between a Continuous and a Binary Regressor

Baseline model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+u_{i},
$$

where D_{i} is binary and X_{i} is continuous
β_{1} is the effect on Y_{i} of changing X_{i}
In this specification, the effect does not depend on value of D_{i}
To allow the effect of changing X_{i} to depend on D_{i}, include the interaction term $D_{i} \times X_{i}$ as a separate regressor:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(D_{i} \times X_{i}\right)+u_{i}
$$

Interpreting the coefficients

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(D_{i} \times X_{i}\right)+u_{i}
$$

Compare the PRF when X changes from x to $x+1$
while D_{i} is fixed at $q \in\{0,1\}$

$$
\begin{aligned}
\mathrm{E}\left[Y_{i} \mid X_{i}=x, D_{i}=q\right]= & \beta_{0}+\beta_{1} x+\beta_{2} q+\beta_{3}(q \times x) \\
\mathrm{E}\left[Y_{i} \mid X_{i}=x+1, D_{i}=q\right]= & \beta_{0}+\beta_{1}(x+1) \\
& +\beta_{2} q+\beta_{3}(q \times(x+1))
\end{aligned}
$$

and their difference

$$
\mathrm{E}\left[Y_{i} \mid X_{i}=x+1, D_{i}=q\right]-\mathrm{E}\left[Y_{i} \mid X_{i}=x, D_{i}=q\right]=\beta_{1}+\beta_{3} q
$$

The effect of X now depends on the value $q \in\{0,1\}$ of D_{i}
Interpretation of β_{3} : increment to effect of X_{i} on Y_{i} when $D_{i}=1$

You could view these two cases as two different PRFs

- the intercept is different
- the slope is different

To see this, just rewrite

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(D_{i} \times X_{i}\right)+u_{i} \\
& =\left(\beta_{0}+\beta_{2} D_{i}\right)+\left(\beta_{1}+\beta_{3} D_{i}\right) X_{i}+u_{i},
\end{aligned}
$$

To make this more explicit, set $D_{i}=0$ to obtain

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

and set $D_{i}=1$ to obtain

$$
Y_{i}=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) X_{i}+u_{i}
$$

Python Code (output edited)

```
> formula = 'testscr ~ str * Hi_el_pct'
> reg8 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg8.summary())
OLS Regression Results
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & coef & std err & z & \(\mathrm{P}>|\mathrm{z}|\) & [0.025 & 0.975] \\
\hline Intercept & 682.2458 & 11.868 & 57.487 & 0.000 & 658.985 & 705.506 \\
\hline str & -0.9685 & 0.589 & -1.644 & 0.100 & -2.123 & 0.186 \\
\hline Hi_el_pct & 5.6391 & 19.515 & 0.289 & 0.773 & -32.609 & 43.887 \\
\hline str:Hi_el_pct & -1.2766 & 0.967 & -1.320 & 0.187 & -3.172 & 0.619 \\
\hline
\end{tabular}
\(==================================================================================\)
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)
```

- Effect of $s t r_{i}$ when $H i E L=0$ is -0.97
- Effect of str_{i} when $H i E L_{i}=1$ is $-0.97-1.28=-2.25$
- Class size reduction is estimated to have a bigger effect when the percent of English learners is large
- But which effects are significant?

Comparing the two PRFs:

$$
\begin{array}{ll}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i} & D_{i}=0 \\
Y_{i}=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) X_{i}+u_{i} & D_{i}=1
\end{array}
$$

Three hypotheses we could look at

1. The two PRFs are the same: $\beta_{2}=0$ and $\beta_{3}=0$

Python Code

```
> ftest = reg8.f_test('str:Hi_el_pct = Hi_el_pct = 0')
> print(ftest)
<F test: F=89.93943806333414, p=3.455817933875603e-33, df_denom=416, df_num=2>
```

Rejected
2. The two PRFs have the same slope: $\beta_{3}=0$

Coefficient on the interaction term has t-statistic of -1.32
Not rejected
3. The two PRFs have the same intercept: $\beta_{2}=0$

Coefficient on HiEL has t-statistic of 0.289
Not rejected

Interactions Between two Continuous Regressors

Baseline model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+u_{i}
$$

where $X_{1 i}, X_{2 i}$ are both continuous
β_{1} is the effect on Y_{i} of changing $X_{1 i}$
In this specification, the effect does not depend on value of $X_{2 i}$
To allow the effect of changing $X_{1 i}$ to depend on $X_{2 i}$, include the interaction term $X_{1 i} \times X_{2 i}$ as a separate regressor:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3}\left(X_{1 i} \times X_{2 i}\right)+u_{i}
$$

Interpreting the coefficients

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3}\left(X_{1 i} \times X_{2 i}\right)+u_{i}
$$

Compare the PRF when $X_{1 i}$ changes from x to $x+1$
while $X_{2 i}$ is fixed at $q \in \mathbb{R}$

$$
\begin{aligned}
\mathrm{E}\left[Y_{i} \mid X_{1 i}=x, X_{2 i}=q\right]= & \beta_{0}+\beta_{1} x+\beta_{2} q+\beta_{3}(q \times x) \\
\mathrm{E}\left[Y_{i} \mid X_{1 i}=x+1, X_{2 i}=q\right]= & \beta_{0}+\beta_{1}(x+1) \\
& +\beta_{2} q+\beta_{3}(q \times(x+1))
\end{aligned}
$$

and their difference

$$
\mathrm{E}\left[Y_{i} \mid X_{1 i}=x+1, X_{2 i}=q\right]-\mathrm{E}\left[Y_{i} \mid X_{1 i}=x, X_{2 i}=q\right]=\beta_{1}+\beta_{3} q
$$

The effect of $X_{1 i}$ now depends on the value $q \in \mathbb{R}$ of $X_{2 i}$
Interpretation of β_{3} : increment to effect of $X_{1 i}$ on Y_{i} when $X_{2 i}=q$

Python Code (output edited)

```
> formula = 'testscr ~ str * el_pct'
reg9 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
print(reg9.summary())
OLS Regression Results
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & coef & std err & z & \(P>|z|\) & [0.025 & \(0.975]\) \\
\hline Intercept & 686.3385 & 11.759 & 58.365 & 0.000 & 663.291 & 709.386 \\
\hline str & -1.1170 & 0.588 & -1.901 & 0.057 & -2.269 & 0.034 \\
\hline el_pct & -0.6729 & 0.374 & -1.799 & 0.072 & -1.406 & 0.060 \\
\hline str:el_pct & 0.0012 & 0.019 & 0.063 & 0.950 & -0.035 & 0.037 \\
\hline
\end{tabular}
```



```
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)
```


Interpreting the results

Estimated effect of class size reduction is nonlinear because the size of the effect itself depends on $e_{-} p c t_{i}$

	el_pct	Slope of str
value	location	of 1.12
1.94	25th percentile	-1.11
8.85	median	-1.10
23.00	75th percentile	-1.09
43.92	90th percentile	-1.07

For example, at the median of el_pct $_{i}$ (8.85% are English learners), the effect of $s t r_{i}$ on test scores is -1.11

The effect of $s t r_{i}$ is decreasing in el_pct ${ }_{i}$ (absolute value)
But the differences do not seem large

Checking statistical significance

- Interaction term is not significant at 5\% level
- Neither is the coefficient on str
- But

Python Code

```
> ftest = reg9.f_test('str:el_pct = str = 0')
> print(ftest)
<F test: F=3.8896634079301577, p=0.021200264867197494, df_denom=416, df_num=2>
```

Rejected

- Yet another example in which one should not conduct a joint hypothesis by looking at the coefficients individually
- An F-test is required

[^0]:

