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We have figured out these three parameters for the sample average:

• expected value is 𝜇𝑌

• variance is 𝜎2
𝑌/𝑛

• standard deviation is 𝜎𝑌/√𝑛

Also, we understand that the sample average itself is a random
variable

It therefore must have a statistical distribution, we write

𝑌̄ ∼ P(𝜇𝑌, 𝜎2
𝑌/𝑛)

where P abbreviates some unknown statistical distribution
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But what is the actual distribution P?

Is it binomial, normal, logistic, exponential, gamma, or what?
(you do not need to know exactly what these are, just accept
that they are different shapes of probability distributions)

Perhaps not too surprisingly, the exact distribution of 𝑌̄
depends on the distribution of the underlying components of 𝑌̄,
i.e., the distribution of 𝑌1, … , 𝑌𝑛
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In our fantasy, we’d like to be able to say something like this:

• if the underlying distribution of 𝑌1, … , 𝑌𝑛 is binomial,
the resulting distribution of 𝑌̄ is also binomial

• if the underlying distribution of 𝑌1, … , 𝑌𝑛 is normal,
the resulting distribution of 𝑌̄ is also normal

• if the underlying distribution of 𝑌1, … , 𝑌𝑛 is logistic,
the resulting distribution of 𝑌̄ is also logistic

• if the underlying distribution of 𝑌1, … , 𝑌𝑛 is exponential,
the resulting distribution of 𝑌̄ is also exponential

• if the underlying distribution of 𝑌1, … , 𝑌𝑛 is gamma,
the resulting distribution of 𝑌̄ is also gamma

Unfortunately, only this statement here is true (which?)
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Here is the correct version of the previous slide

• if the underlying distribution of 𝑌1, … , 𝑌𝑛 is binomial,
the resulting distribution of 𝑌̄ is approximately normal

• if the underlying distribution of 𝑌1, … , 𝑌𝑛 is normal,
the resulting distribution of 𝑌̄ is also normal

• if the underlying distribution of 𝑌1, … , 𝑌𝑛 is logistic,
the resulting distribution of 𝑌̄ is approximately normal

• if the underlying distribution of 𝑌1, … , 𝑌𝑛 is exponential,
the resulting distribution of 𝑌̄ is approximately normal

• if the underlying distribution of 𝑌1, … , 𝑌𝑛 is gamma,
the resulting distribution of 𝑌̄ is approximately normal

(‘approximately’ means ‘almost’)
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Does this look surprising?

Where does this come from?

Answer: the Central Limit Theorem

Most generally, applying the CLT to the sample average 𝑌̄
results in the following statement:

Given an i.i.d. random sample, the sample average has an
approximate normal distribution irrespective of the underly-
ing distribution of 𝑌1, … , 𝑌𝑛
(as long as they are well-behaved).

When the underlying distribution of 𝑌1, … , 𝑌𝑛 is normal,
you can replace the word ‘approximate’ by the word ‘exact’.
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Theorem (Central Limit Theorem)
Let 𝑌1, … , 𝑌𝑛 be i.i.d.(𝜇𝑌, 𝜎2

𝑌), where 0 < 𝜎2
𝑌 < ∞. As the sample

size 𝑛 approaches ∞ the distribution of the sample average 𝑌̄ will
be approximately equal to

𝑌̄ approx.∼ N (𝜇𝑌, 𝜎2
𝑌/𝑛)

Recall: we already knew that 𝑌̄ ∼ P(𝜇𝑌, 𝜎2
𝑌/𝑛)

(where P was just a placeholder for some distribution)

We now can be more specific:
‘∼ P‘ can be replaced by ‘approx.∼ N‘
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A quick corollary is this:

Corollary

√𝑛𝑌̄ − 𝜇𝑌
𝜎𝑌

approx.∼ 𝑁(0, 1)

(the standardized sample average has an approximate standard
normal distributions)

What’s remarkable is that it doesn’t matter what the underlying
distribution of the 𝑌1, … , 𝑌𝑛 is—as long as they are i.i.d.
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Practical meaning of the CLT:

• when the sample size 𝑛 is large …

• the sample average 𝑌̄ has almost a normal distribution …

• around the population mean 𝜇𝑌 …

• with variance 𝜎2
𝑌/𝑛 …

• irrespective of what the underlying distribution of the 𝑌1, … , 𝑌𝑛
are

But when is 𝑛 ‘large’ enough?

Rule of thumb: 𝑛 = 30 is often times good enough!
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Illustration of CLT

The underlying distribution of 𝑌1, … , 𝑌𝑛 is exponential
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Illustration of CLT

The underlying distribution of 𝑌1, … , 𝑌𝑛 is exponential
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Main use of CLT: hypotheses testing

Whenever we calculate a sample average, we need to remember that
it should be interpreted as the outcome of a random variable

In other words: the sample average is random

For a different random draw from the population, we would have
calculated a different sample average
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Example: bus arrival time in Lyneham

• bus schedule says that the bus comes at 8:10am

• I assembled a random sample: during the last 30 workdays, the
bus came, on average, at 8:14am

• is that consistent with the bus schedule?

Here the bus company claims that 𝜇𝑌 = 810
(population mean)

I get a sample average of 𝑌̄ = 814

How does the CLT help me now?
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I understand that my random sample is, well, random

Had I collected my data on different days, perhaps I would have
calculated a sample average closer to the bus company’s claim

In any case, I only have the one random sample of 30 observations

I don’t know the actual distribution of the underlying 𝑌𝑖 (bus arrival
times on day 𝑖), but thanks to the CLT I don’t need to

The CLT says that 𝑌̄30
approx.∼ N(810, 𝜎2

𝑌/30)
Let’s say an oracle told me that 𝜎2

𝑌 = 45
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Bus arrival time distribution

How should we read this picture?
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If what the bus company claims (that the bus arrives at 8:10am) is
correct, then it would be very unlikely for me to obtain a sample
average of 8:14am
(because that number is far in the right-hand tail of the distribution)

Yet, I have obtained a sample average of 8:14am

I conclude that the bus company is probably misstating the actual
mean bus arrival time

While it is theoretically possible that the claim of the bus company is
correct, it is improbable

This is an example of a probabilistic conclusion
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Turns out, we just conducted our first hypothesis test

Null hypothesis: 𝜇𝑌 = 810

Alternative hypothesis: 𝜇𝑌 ≠ 810

If the sample average obtained from the random sample is too far
away from the hypothesized population mean of 8:10am, then we
conclude that the null hypothesis probably does not hold

In that case we reject the null in favor of the alternative hypothesis
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But what do we mean by too far?

How far away can the sample mean be from the hypothesized
population mean to imply rejection of the hypothesized value?

Answer:
if true sample mean has less than a 5% chance to occur under the
hypothesized population mean we declare this ‘too far’

Exploiting the features of the normal distribution, this translates into
the following mathematical statement:

Everything smaller than 𝜇𝑌 − 1.96 ⋅ 𝜎𝑌/√𝑛 and
everything larger than 𝜇𝑌 + 1.96 ⋅ 𝜎𝑌/√𝑛

(Because 1.96 standard deviations to the left and right of the mean
covers approximately 95% of the area)
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In the bus example too far means

everything smaller than 810 − 1.96 ⋅ √1.5 = 807.60 and
everything larger than 810 + 1.96 ⋅ √1.5 = 812.40
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The sample average of 8:14 lies outside the symmetric 95% area
which is centered around the hypothesized true value of the
population mean

To repeat: our sample average of 8:14 is unlikely to occur if the true
population mean was really equal to 8:10

We therefore reject the null hypothesis that the true population
mean is equal to 8:10

This raises the question:
What would 𝜇𝑌 need to be for us not to reject the null hypothesis?

Which population mean would be in line with our sample average of
8:14?
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Currently our approach is to propose one particular hypothesized
value for the true (unobserved) population mean 𝜇𝑌 and compare it
to the sample average obtained from the data

If the sample average lies beyond 2.40 to the left/right of the
hypothesized population mean we conclude that the hypothesized
population mean is probably not equal to the true population mean

But what population mean could be true given the sample average
of 8:14?

Wouldn’t is seem clever to study this thing instead:

[814 − 1.96 ⋅ √1.5, 814 + 1.96 ⋅ √1.5]
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That thing is called confidence interval

Instead of looking 2.40 to the left and to the right of the
hypothesized population mean, we look 2.40 to the left and 2.40 to
the right of the sample average

This gives us the set of values the hypothesized population mean
could take on in order to not be rejected

Next, a more formal definition

64 / 102



Definition
A confidence interval for the population mean is the set of values
the true population mean can be equal to for it not to be rejected
at a 5% significance level.

Mathematically, the interval is defined by

𝐶𝐼(𝜇𝑌) ∶= [𝑌̄ − 1.96 ⋅ 𝜎𝑌/√𝑛, 𝑌̄ + 1.96 ⋅ 𝜎𝑌/√𝑛]

To be able to calculate 𝐶𝐼 we need to know 𝑌̄, 𝜎𝑌, and 𝑛

But we only know two of these (which?)
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We do not know 𝜎𝑌 , the standard deviation in the population

Remember: we do not observe the population, therefore we do not
know its mean nor its variance nor its standard deviation

Whenever we do not know a population parameter (such as the
mean or the variance or the standard deviation) we just use the
sample analog instead

Therefore, we replace 𝜎𝑌 (standard deviation in the population) by
the standard deviation in the sample
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Definition
The sample variance is the variance in the sample:

𝑠2
𝑌 ∶= 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌̄)2

Corollary: the sample standard deviation is simply equal to 𝑠𝑌
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An operational version of the confidence interval therefore is given
by

𝐶𝐼(𝜇𝑌) ∶= [𝑌̄ − 1.96 ⋅ 𝑠𝑌/√𝑛, 𝑌̄ + 1.96 ⋅ 𝑠𝑌/√𝑛]

The ratio 𝑠𝑌/√𝑛 has a special name

Definition
The standard error of 𝑌̄ is defined as SE(𝑌̄) ∶= 𝑠𝑌/√𝑛.

It is the estimated standard deviation of the sample average 𝑌̄.

The confidence interval therefore becomes
𝐶𝐼(𝜇𝑌) ∶= [𝑌̄ − 1.96 ⋅ SE(𝑌̄), 𝑌̄ + 1.96 ⋅ SE(𝑌̄)]
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This last expression for the confidence interval can be derived
entirely from information that is contained in the random sample

Given a random sample from the population we can therefore
construct a confidence interval for the unobserved population mean

This confidence interval lets us pin down, with 95% probability (or
confidence), the possible values that the unobserved population
mean can take on
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The problem of statistical inference can be expressed like this:

• we want to learn something about the population

• but we do not observe the population

• instead we only observe a random sample drawn from the
population

• the random sample is a subset of the population

• we need to use that random subset to approximate the
population
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Definition
The problem of statistical inference consists of using a random
sample to learn about statistical parameters of the unobserved
population.

What do we mean by ‘statistical parameters’?

• mean

• variance

• moments

In at least 80% of all cases we are interested in the mean
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Example: What is the mean weight of Tidbinbilla roos?

Suppose the park rangers want to know the answer to that question
and hire us to come up with an answer

They give us permission to randomly collect 30 roos

(It is out of the question to collect ALL roos, we therefore do not
observe the entire population)

Wouldn’t it seem reasonable to use the average weight in our sample
as our best guess of the mean weight of Tidbinbilla roos?
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The roo example illustrates common terminology

• We want to learn about the population mean E[𝑌]
• We have no hope of knowing this mean
b/c we do not observe the entire population

• the population mean is unobserved

• we do, however, observe the sample average 𝑌̄
• We use 𝑌̄ as an estimator of the population mean

• Given our particular random sample of 30 roos,
the sample average takes on the value of, say, 50kg

• That value is our estimate of the population mean
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Here a more abstract definition of an estimator

Definition
An estimator ̂𝜃 is a procedure for using sample data to compute an
educated guess of the value of an unobserved population
parameter 𝜃.

Here is a closely related term

Definition
An estimate is the numerical value that you obtain after applying
an estimator to your sample data.
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Example to highlight the difference

I want to know mean height of EMET2007 students

I can’t be bothered to ask every student in the class

Instead I randomly sample 30 students

As an estimator, I use the sample average

Let’s say that that average is equal to 174cm—that’s my estimate
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Estimators are functions of the sample data

Therefore, estimators themselves are random variables
(if you draw another random sample you are likely to obtain a
different estimate even though you are applying the same estimator)
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It should also be clear that, most generally,

𝜃 ≠ ̂𝜃

The object on the lhs is what we are after

• that’s the unobserved population parameter

• but we do not observe the entire population

• instead, we can only calculate the object on the rhs

• that’s our best guess for what the lhs might be close to
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More specifically, let’s assume we want to know about the
unobserved population mean 𝜇𝑌 and we use the sample average 𝑌̄
as an estimator

Then again

𝜇𝑌 ≠ 𝑌̄

The object on the lhs is what we are after

• that’s the population mean

• but we do not observe the entire population

• instead, we can only calculate the sample average

• that’s our best guess for what the lhs might be close to
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Sample average is not the only estimator of the population mean

You can nominate anything you want as your estimator

Going back to the example of mean heights of EMET2007 students,
here are some alternative estimators:

• the height of the tallest student in the sample

• the height of the smallest student in the sample

• the average height of female students in the sample

• the number 42
(the ‘answer to everything estimator’)
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Clearly, these are all estimators
(they satisfy the definition given earlier)

Clearly, they do not seem like sensible estimators (why?)

In fact, the last one is silly
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The point is: there always exist an endless number of possible
estimators for any given estimation problem

Most of them do not make any sense

What then constitutes a good estimator?

Which estimator should we choose?
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For most of EMET2007, we are interested in estimating population
means

What is a good estimator for the population mean?

What is the best estimator for the population mean?

We assess “goodness” of an estimator by two properties:

1. bias

2. variance

Let’s look at these in turn
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Definition
An estimator ̂𝜃 for an unobserved population parameter 𝜃 is
unbiased if its expected value is equal to 𝜃, that is

E[ ̂𝜃] = 𝜃

If we draw lots of random samples of size 𝑛 we obtain lots of
estimates ̂𝜃1, ̂𝜃2, ̂𝜃3, …

If the estimator ̂𝜃 is unbiased, then the mean of these estimates will
be equal to 𝜃

Note that this is only a thought exercise, in reality we will not draw
lots of random samples (we only have one available)
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Definition
An unbiased estimator ̂𝜃 for an unobserved population parameter
𝜃 has minimum variance if its variance is smaller than the variance
of any other unbiased estimator ̃𝜃 of 𝜃:

Var ( ̂𝜃) ≤ Var ( ̃𝜃)

We also say that the estimator ̂𝜃 is efficient.
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A little detour:

Definition
A linear estimator ̂𝜃 is an estimator that is constructed as a linear
combination of the sample data 𝑌1, … , 𝑌𝑛.

In econometrics, most estimators we consider are linear,
obvious example: sample average 𝑌̄

Definition
A Best Linear Unbiased Estimator (BLUE) is an estimator that is
linear, unbiased, and has minimum variance

The word “best” here refers to the estimator having minimum
variance

Having a BLUE estimator is a very good thing
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Whenever we are interested in estimating the population mean
(which covers at least 80% of our applications, if not 99%!), there is
one particular estimator that can’t be beat:

Theorem
The sample average 𝑌̄ is BLUE for the population mean 𝜇𝑌 .

This is an immensely important result!

The best thing we can do if somebody gives us a random sample and
we are asked to estimate the unobserved population mean is to take
the sample average

This is a simple estimator with the powerful BLUE property
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