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The Population Linear Regression Model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +⋯+ 𝛽𝑘𝑋𝑘𝑖 + 𝑢𝑖, 𝑖 = 1,… , 𝑛

We have n observations, (𝑋1𝑖, 𝑋2𝑖, … , 𝑋𝑘𝑖, 𝑌𝑖), 𝑖 = 1, .., 𝑛

• 𝑌𝑖 is the dependent variable

• (𝑋1𝑖, 𝑋2𝑖, … , 𝑋𝑘𝑖) are the 𝑘 independent variables or explanatory
variables or regressors

• 𝑢𝑖 is the error term

• 𝛽0 is the intercept

• 𝛽1, 𝛽2, … , 𝛽𝑘 are the slope coefficients (or parameters)

The error term 𝑢𝑖 captures all factors that could explain 𝑌𝑖
over and above the explanatory variables 𝑋1𝑖, 𝑋2𝑖, … , 𝑋𝑘𝑖
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Interpretation of the slope coefficients 𝛽1, 𝛽2, … , 𝛽𝑘 is a bit different
here (compared to the model with only one regressor)

For example, 𝛽1 is the effect on 𝑌 of a unit change in 𝑋1,
holding 𝑋2, 𝑋3, … , 𝑋𝑘 constant

Illustrating this via the PRF:

E[𝑌𝑖|𝑋1𝑖 = 𝑥1, 𝑋2𝑖 = 𝑥2, … , 𝑋𝑘𝑖 = 𝑥𝑘] =
𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘

E[𝑌𝑖|𝑋1𝑖 = 𝑥1 + 1,𝑋2𝑖 = 𝑥2, … , 𝑋𝑘𝑖 = 𝑥𝑘] =
𝛽0 + 𝛽1(𝑥1 + 1) + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘,

and therefore, the difference is equal to,

E[𝑌𝑖|𝑋1𝑖 = 𝑥1 + 1,𝑋2𝑖 = 𝑥2, … , 𝑋𝑘𝑖 = 𝑥𝑘]
− E[𝑌𝑖|𝑋1𝑖 = 𝑥1, 𝑋2𝑖 = 𝑥2, … , 𝑋𝑘𝑖 = 𝑥𝑘] = 𝛽1
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The coefficient 𝛽1 captures the so-called partial effect on 𝑌 of 𝑋1

(And similarly, of course, for the other coefficients and regressors)
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Definition
The Ordinary Least Squares (OLS) estimators are defined by

�̂�0, �̂�1, … , �̂�𝑘 ∶= argmin
𝑏0,𝑏1,…,𝑏𝑘

𝑛

𝑖=1

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋1𝑖 −⋯ − 𝑏𝑘𝑋𝑘𝑖)2

In words

• we look at the rhs as a function in 𝑏0, 𝑏1, … , 𝑏𝑘
• that function happens to be quadratic

• we find the values of 𝑏0, 𝑏1, … , 𝑏𝑘 that minimize that function

• the values that minimize that function are called solution

• we give the solution a specific name: �̂�0, �̂�1, … , �̂�𝑘
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Reminder: geometry of the minimization problem

But now the problem is higher dimensional!
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In the multiple regression model, the geometry of the minimization
problem cannot be illustrated in two dimensions because the
problem is of dimension 𝑘 + 2
(𝑘 slope coefficients plus constant term plus image dimension)

Going back to the mathematical problem:
Are you able to derive the solutions �̂�0, �̂�1, … , �̂�𝑘?

Don’t even bother!
Way too much work for too little extra insight

The best way to derive them by hand is by using matrix algebra

We rely on Python to compute the values for us
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Predicted values and residual

Definition
The predicted value of 𝑌𝑖 is given by �̂�𝑖 ∶= �̂�0 + �̂�1𝑋1𝑖 +⋯+ �̂�𝑘𝑋𝑘𝑖.
The predicted value is the estimated PRF.

Definition
The residual is given by �̂�𝑖 ∶= 𝑌𝑖 − �̂�𝑖.
It is the difference between 𝑌𝑖 and the predicted value.

These definitions are straightforward extensions of what you have
learned for the simple regression model
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Need to revisit the four OLS Assumptions for the multiple regression
model

The assumptions are not all that different, they are mainly
straightforward modifications of the ones we have seen for the
simple regression model
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OLS estimators are statistics that vary with the underlying random
sample

Three natural questions to ask are:

• What is the expected value of the OLS estimator?

• What is the variance of the OLS estimator?

• What is the sampling distribution of the OLS estimator?

To answer these questions, we need to impose four assumptions

They are known as the OLS Assumptions
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Assumption (OLS Assumption 1)
The error term 𝑢𝑖 is conditionally mean independent (CMI) of
𝑋1𝑖, … , 𝑋𝑘𝑖, meaning:

𝐸[𝑢𝑖|𝑋1𝑖, … , 𝑋𝑘𝑖] = 𝐸[𝑢𝑖] = 𝜇𝑢.

Note: many textbooks simply set 𝜇𝑢 = 0, which is without loss of
generality
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CMI restricts the expected value of the error terms

Although we do not observe the error terms 𝑢𝑖, and therefore we do
not know their distribution, we are willing to impose a restriction on
their expected values

The essential restriction in Assumption 1 is that the expected value
of 𝑢𝑖 is not a function of 𝑋1𝑖, … , 𝑋𝑘𝑖

When we write that 𝐸[𝑢𝑖|𝑋1𝑖, … , 𝑋𝑘𝑖] = 𝐸[𝑢𝑖], we are saying that
𝐸[𝑢𝑖|𝑋1𝑖, … , 𝑋𝑘𝑖]

• is not dependent on 𝑋1𝑖, … , 𝑋𝑘𝑖, and instead

• is constant with value 𝜇𝑢

Assumption 1 says none of the 𝑋1𝑖, … , 𝑋𝑘𝑖 is not informative for the
mean of 𝑢𝑖
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Assumption (OLS Assumption 2)
The sample data (𝑋1𝑖, … , 𝑋𝑘𝑖, 𝑌𝑖), 𝑖 = 1,… , 𝑛, are independent and
identically distributed (i.i.d.) draws from the joint population
distribution.
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Assumption 2 arises automatically if the entity 𝑖 is sampled by
simple random sampling:

• The entities are selected from the same population, so
(𝑋1𝑖, … , 𝑋𝑘𝑖, 𝑌𝑖) are identically distributed for all 𝑖 = 1,…𝑛

• The entities are selected at random, so the values of
(𝑋1𝑖, … , 𝑋𝑘𝑖, 𝑌𝑖) for different entities are independently
distributed.

The main place we will encounter non-i.i.d. sampling is when data
are recorded over time for the same entity (panel data and time
series data)
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Assumption (OLS Assumption 3)
Large outliers in 𝑋1𝑖, … , 𝑋𝑘𝑖 and/or 𝑌𝑖 are rare. Technically,
𝑋1𝑖, … , 𝑋𝑘𝑖 and 𝑌𝑖 have finite fourth moments:

for all 𝑗 = 1,… , 𝑘, 𝐸[𝑋4
𝑗𝑖] < ∞, 𝐸[𝑌4

𝑖 ] < ∞.
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Large outliers for any of 𝑋1𝑖, … , 𝑋𝑘𝑖 and 𝑌𝑖 can strongly influence OLS
estimates

In practice, outliers are often data glitches
(coding or recording problems)

Simple suggestions:

• literally look at your data spreadsheet

• are there any suspicious numbers?
(for example, somebody’s age was accidentally recorded as a
negative number)

• do a scatterplot to spot outliers
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Assumption (OLS Assumption 4b)
The error term 𝑢𝑖 is heteroskedastic:

Var (𝑢𝑖|𝑋1𝑖, … , 𝑋𝑘𝑖) = 𝜎2𝑢(𝑋1𝑖, … , 𝑋𝑘𝑖)

We therefore explicitly allow the variance of the error term to be a
function in the regressors

We always want to think of the error terms as heteroskedastic (rather
than homoskedastic)

Reason: heteroskedasticity is much more general and Python can
easily handle it for us easily
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The textbook lists a completely different Assumption 4:
Assumption
The regressors are not perfectly collinear.
(Or, there is no perfect multicollinearity.)

I’m not a big fan of this assumption

Perfect collinearity between two regressors 𝑋ℎ𝑖 and 𝑋𝑗𝑖 means that
they have a correlation of 1

But this would mean that 𝑋ℎ𝑖 = 𝑋𝑗𝑖

But why would you ever include one and the same regressor twice
on the rhs of your model?

This is not a problem at all in practice, so we just ignore this
distraction
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The four OLS Assumptions are needed, as before, to derive the
sampling distribution (or asymptotic distribution or large sample
distribution) of �̂�1, … , �̂�𝑘
For the simple regression model it was not a problem to do this by
hand (although it was a bit tedious)

Here, in the multiple regression model, deriving the asymptotic
distribution becomes impossible
(unless we resort to matrix algebra, which we won’t)

Therefore, I will just state the results
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Theorem
Under Assumptions 1 and 2 the OLS estimators
�̂�1, … , �̂�𝑘 are unbiased:

E[�̂�𝑗|𝑋1𝑖, … , 𝑋𝑘𝑖] = 𝛽𝑗, for 𝑗 = 1,… , 𝑘
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Theorem
Under Assumptions 1, 2 and 4b, the OLS estimators have variances

Var (�̂�𝑗|𝑋1𝑖, … , 𝑋𝑘𝑖) = 𝜎2�̂�𝑗 , for 𝑗 = 1,… , 𝑘,

and covariances

Cov(�̂�ℎ, �̂�𝑗|𝑋1𝑖, … , 𝑋𝑘𝑖) = 𝜎�̂�ℎ�̂�𝑗

for ℎ = 1,… , 𝑘, and 𝑗 = 1,… , 𝑘.

In this theorem, the variances 𝜎2�̂�𝑗 and the covariances 𝜎�̂�ℎ�̂�𝑗 are
placeholders for complicated mathematical expressions
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Theorem
The asymptotic distribution of the OLS estimator �̂�𝑗 under OLS
Assumptions 1, 2, 3 and 4b is

�̂�𝑗
𝑎𝑝𝑝𝑟𝑜𝑥.∼ N 𝛽𝑗, 𝜎2�̂�𝑗 ,

for 𝑗 = 1,… , 𝑘.

This theorem is the basis for deriving standard errors and confidence
intervals for �̂�𝑗
But since we do not have an explicit result for what 𝜎�̂�𝑗 is and where
it comes from, we will not provide explicit results for standard errors
and confidence intervals

Instead, we will rely on Python to do the hard work for us
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Example: association between test score and student teacher ratio in
Californian secondary schools

So far, we’ve only done a simple regression of

• testscr: average student test score in a school district

• str: average number of students per teacher in a school district

Now we add two additional regressors:

• el_pct: the percentage of English learners in a school district
(many students are migrants from Latin America)

• expn_stu: the total annual expenditure per student in the
school district
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Comparing simple versus multiple regression

Python Code (output edited)
> import pandas as pd
> import statsmodels.formula.api as smf
> df = pd.read_csv('caschool.csv')
> formula_simpreg = 'testscr ~ str'
> reg0 = smf.ols(formula_simpreg, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg0.summary())

OLS Regression Results
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 698.9330 10.364 67.436 0.000 678.619 719.247
str -2.2798 0.519 -4.389 0.000 -3.298 -1.262
==============================================================================
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

> formula_multreg = 'testscr ~ str + el_pct + expn_stu'
> reg1 = smf.ols(formula_multreg, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg1.summary())

OLS Regression Results
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 649.5779 15.45815.458 42.021 0.000 619.280 679.876
str -0.2864 0.4820.482 -0.594 0.552 -1.231 0.658
el_pct -0.6560 0.0320.032 -20.640 0.000 -0.718 -0.594
expn_stu 0.0039 0.0020.002 2.447 0.014 0.001 0.007
==============================================================================
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

15.458
0.482
0.032
0.002
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Modified interpretation of point estimate in multiple regression

Python Code (output edited)
> formula_multreg = 'testscr ~ str + el_pct + expn_stu'
> reg1 = smf.ols(formula_multreg, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg1.summary())

OLS Regression Results
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 649.5779 15.45815.458 42.021 0.000 619.280 679.876
str -0.2864 0.4820.482 -0.594 0.552 -1.231 0.658
el_pct -0.6560 0.0320.032 -20.640 0.000 -0.718 -0.594
expn_stu 0.0039 0.0020.002 2.447 0.014 0.001 0.007
==============================================================================
Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

• If str increases by one unit then testscr is expected to
decrease by 0.2864 units holding everything else constant

• contrast to simple regression model:
If str increases by one unit then testscr is expected to
decrease by 2.2798 units

15.458
0.482
0.032
0.002
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Comparing the point estimates for str :

• simple regression: �̂�1 = −2.2798, statistically significant
• multiple regression: �̂�1 = −0.2864, statistically insignificant

If we view the multiple regression model as a ‘richer’ specification,
then we could conclude that the simple regression model overstates
(in absolute value) the association between test scores and the
student teacher ratio

The simple regression model seems to ascribe too important a role
to the student teacher ratio

When we control for other factors (adding el_pct and expn_stu),
the importance of the student teacher ratio goes down

Aside: The highlighted numbers on the previous slide correspond to
the standard errors �̂��̂�𝑗
They are the estimates of the square root of the asymptotic variance
𝜎2�̂�𝑗 from the previous theorem
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Recall the preceding multiple regression results:

Python Code (output edited)
> formula = 'testscr ~ str + el_pct + expn_stu'
> reg1 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> print(reg1.summary())

OLS Regression Results
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 649.5779 15.458 42.021 0.000 619.280 679.876
str -0.2864 0.482 -0.594 0.552 -1.231 0.658
el_pct -0.6560 0.032 -20.640 0.000 -0.718 -0.594
expn_stu 0.0039 0.002 2.447 0.014 0.001 0.007
==============================================================================

You know how to use this output to test simple hypothesis

For example, if you want to test the hypotheses that the true
coefficient of 𝑒𝑥𝑝𝑛_𝑠𝑡𝑢 is equal to zero, you would be testing
𝐻0 ∶ 𝛽3 = 0 against the alternative 𝐻1 ∶ 𝛽3 ≠ 0

The 𝑡-statistic of �̂�3 is 2.45 which is sufficiently larger than 1.96 and
therefore we reject 𝐻0 in favor of 𝐻1
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But what if you want to test joint hypotheses instead?

Let’s say you want to test whether the two coefficients of 𝑠𝑡𝑟 and
𝑒𝑥𝑝𝑛_𝑠𝑡𝑢 are both equal to zero

Formally, we want to test null hypothesis

𝐻0 ∶ 𝛽1 = 0 and 𝛽3 = 0
𝐻1 ∶ 𝛽1 ≠ 0 and/or 𝛽3 ≠ 0

You might think that it is ok to just look at their 𝑡-statistics separately
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That is, you noticed that the 𝑡-statistic of 𝑒𝑥𝑝𝑛_𝑠𝑡𝑢 is larger than 1.96
while the 𝑡-statistic of 𝑠𝑡𝑟 is less than 1.96 (in absolute value) and
therefore conclude that the joint hypothesis 𝛽1 = 0 and 𝛽3 = 0 does
not appear to hold

Perhaps counter-intuitive, that kind of argument is flawed

The argument ignores that �̂�1 and �̂�3 and their 𝑡-statistics are likely
to be correlated with each other

Testing 𝛽1 and 𝛽3 separately implicitly assumes that we can treat
their estimators as statistically independent (they are not)

Instead of separately considering the 𝑡-statistic, one should look at
the so-called 𝐹-statistic which implicitly recognizes the correlation
between the 𝑡-statistics
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In the given example, the 𝐹-statistic is given by

𝐹 ∶= 1
2
𝑡21 + 𝑡23 − 2�̂�𝑡1,𝑡3 𝑡1𝑡3

1 − �̂�2𝑡1,𝑡2
,

where �̂�𝑡1,𝑡3 is estimator of correlation b/w the two 𝑡-statistics

The 𝐹-statistic is a function of the two 𝑡-statistics

To get some intuition, set �̂�𝑡1,𝑡3 = 0

It follows that 𝐹 = (𝑡21 + 𝑡23)/2

This is the average of the two squared 𝑡-statistics

Under the null hypothesis 𝛽1 = 0 and 𝛽3 = 0, 𝐹 is close to zero

Under the alternative hypothesis 𝐹 will be a large number

Most generally, however, �̂�𝑡1,𝑡3 ≠ 0 and the given formula for 𝐹 also
factors in that correlation between 𝑡1 and 𝑡3
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Here is how you would test the joint hypothesis
𝐻0 ∶ 𝛽1 = 0 and 𝛽3 = 0 in Python:

Python Code
> formula = 'testscr ~ str + el_pct + expn_stu'
> reg1 = smf.ols(formula, data=df, missing='drop').fit(cov_type='HC1', use_t=False)
> ftest = reg1.f_test('str = expn_stu = 0')
> print(ftest)

<F test: F=5.433727045036685, p=0.004682304362845301p=0.004682304362845301, df_denom=416, df_num=2>

The p-value equals 0.0047 which is smaller than 0.05 and we
therefore reject 𝐻0

p=0.004682304362845301
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Of course, you can also test any combination of coefficients in your
model (not just 𝛽1 and 𝛽3)

For example, you may want to test all your coefficients

In the given example, we may want to test the joint hypothesis that

𝐻0 ∶ 𝛽1 = 0 𝛽2 = 0 𝛽3 = 0

against the alternative hypothesis that

𝐻1 ∶ at least one 𝛽𝑗 ≠ 0 for 𝑗 = 1, 2, 3
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To conduct this test, in Python you could simply type

Python Code
> ftest = reg1.f_test('str = el_pct = expn_stu = 0')
> print(ftest)

<F test: F=147.20371132008665, p=5.201469651042804e-65p=5.201469651042804e-65, df_denom=416, df_num=3>

As you can see, the associated p-value is tiny

Therefore, we reject the null

p=5.201469651042804e-65
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