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Assignment 2

Deadline: 17 October at 12:00pm (noon, mid-day)

Reminder: my deadlines are very sharp!

(If you submit at 12:01pm you will receive a mark of zero!)

No extensions given under any circumstances!

Note: I do not offer any help on solving the assignment!



Final Exam

Scheduled for 13 November

After week 12 I will offer extra office hours

Will make specific announcement in last lecture
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When the independent variable Yi is binary, we estimate a

model for the probability of success conditional on Xi:

Pr(Yi = 1|Xi)

We have looked at three alternative ways of modeling this:

Pr(Yi = 1|Xi) =


β0 + β1Xi LPM

Φ(β0 + β1Xi) Probit

F(β0 + β1Xi) Logit

Recall that

I Φ(·) is the cdf of the standard normal distribution

I F(·) is the cdf of the logistic distribution

I Φ(·) and F(·) look similar; they both produce an

“S”-shaped look
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How should we define marginal effects in these models?

Definition

In models with binary outcome variables, the marginal effect

of the explanatory variable Xi at x is given by

Pr(Yi = 1|Xi = x + 1)− Pr(Yi = 1|Xi = x).

(If Xi is a continuous random variable, then the marginal effect

would be defined as the partial derivative with respect to Xi)

Important: the marginal effect is the effect of changing X on the

probability that Y is equal to one

Here x is a particular value of Xi

Does the marginal effect vary in x? Let’s take a closer look. . .



Let’s calculate the marginal effect at x for each of the three

models:

Pr(Yi = 1|Xi = x + 1)− Pr(Yi = 1|Xi = x)

=


β0 + β1(x + 1)− (β0 + β1x) = β1 LPM

Φ(β0 + β1(x + 1))−Φ(β0 + β1x) Probit

F(β0 + β1(x + 1))− F(β0 + β1x) Logit

For the LPM, the marginal effect collapses to β1

For probit and logit this does not happen because Φ(·) and F(·)
are not linear functions (for example, Φ(2 + 1)−Φ(2) 6= Φ(1))



Going back to our question from two slides earlier “Does the

marginal effect vary in x?”, the marginal effect does

I not vary in x for the LPM

I vary in x for the probit and logit models

The nonlinearity of probit and logit models makes the

estimation of marginal effects a lot more complicated

The effect of changing X by one unit on the probability that

Y = 1 is different for every value of X

Therefore, for every value of X the marginal effect is different!

So far, I have just presented the case of one explanatory variable



But in general, there could be several explanatory variables

X1, . . . , Xk

In the probit and logit models, the marginal effects will then be

functions of X1 = x1 up to Xk = xk

There will be countless possibilities

To make this tractable in practice, you would only focus on a

small subset of possible values that X1, . . . , Xk can take on



LPM example:

Pr(Employedi = 1|Malei, Educi, Agei)

= β0 + β1Malei + β2Educi + β3Agei

The marginal effect of increasing age from 20 to 30 is equal to

Pr(Employedi = 1|Malei = x1, Educi = x2, Agei = 30)

−Pr(Employedi = 1|Malei = x1, Educi = x2, Agei = 20)

= β0 + β1x1 + β2x2 + β3 · 30

−(β0 + β1x1 + β2x2 + β3 · 20)

= 10β3



I That marginal effect is the same for both men and women

I It is also the same for a high-school graduate and a college

graduate

I It is the same irrespective of the values of x1 and x2

The marginal effect of increasing age from 30 to 40 is equal to

Pr(Employedi = 1|Malei = x1, Educi = x2, Agei = 40)

−Pr(Employedi = 1|Malei = x1, Educi = x2, Agei = 30)

= β0 + β1x1 + β2x2 + β3 · 40

−(β0 + β1x1 + β2x2 + β3 · 30)

= 10β3

It is the same as changing age from 20 to 30

Bottom line: marginal effect constant (because of linearity)



Probit example (logit behaves the same):

Pr(Employedi = 1|Malei, Educi, Agei)

= Φ(β0 + β1Malei + β2Educi + β3Agei)

The marginal effect of increasing age from 20 to 30 is equal to

Pr(Employedi = 1|Malei = x1, Educi = x2, Agei = 30)

−Pr(Employedi = 1|Malei = x1, Educi = x2, Agei = 20)

= Φ(β0 + β1x1 + β2x2 + β3 · 30)

−Φ(β0 + β1x1 + β2x2 + β3 · 20)

6= 10β3 b/c of non-linearity



I That marginal effect is not the same for men and women,

high-school graduates and college graduates

I It does depend on specific values we plug in for x1 and x2

The marginal effect of increasing age from 30 to 40 is equal to

Pr(Employedi = 1|Malei = x1, Educi = x2, Agei = 40)

−Pr(Employedi = 1|Malei = x1, Educi = x2, Agei = 30)

= Φ(β0 + β1x1 + β2x2 + β3 · 40)

−Φ(β0 + β1x1 + β2x2 + β3 · 30)

6= Pr(Employedi = 1|Malei = x1, Educi = x2, Agei = 30)

−Pr(Employedi = 1|Malei = x1, Educi = x2, Agei = 20)

The two marginal effects are not the same

Bottom line: marginal effect not constant (bc of non-linearity)
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Generic estimation problem:

I we have some data Y1, . . . , Yn

(let’s forget about X1, . . . , Xn for a few slides)

I these data are thought of as being generated by some

unknown random process

I we only know one thing about that random process:

the distribution D(Yi|θ) which generated Y1, . . . , Yn

(more precisely: we assume that we know the distribution)

I the distribution D(·|θ) is only known up to parameter θ

(note: θ can be a container for several parameters)

I we do not know θ, our goal is to estimate it

One way to estimate θ is to use OLS, another entirely new way

is to use maximum likelihood estimation (MLE)



Definition

The likelihood function is the joint probability (or density) of

the data Y1, . . . , Yn treated as a function of the parameters θ.

The likelihood function is denoted L(θ|Y1, . . . , Yn).

We read L(θ|Y1, . . . Yn) as a function in the unknown parameter

θ given the data Y1, . . . , Yn

To obtain an estimator for the unknown parameter θ we only

need to maximize the likelihood function. . .



Definition

The maximum likelihood estimator is the value of the

parameter that maximizes the likelihood function:

θ̂MLE := argmaxθL(θ|Y1, . . . , Yn)

The maximum likelihood estimator is the value of θ that

maximizes the likelihood that the particular sample data

available to us occurs



Let’s say Yi has the following distribution (for i = 1, . . . , n):

Yi =

1 with probability p

0 with probability 1− p,

(Say: student i’s chance of scoring an HD in EMET3004)

(as you surely remember from STAT1008, this is called a

Bernoulli distribution with probability of success p)

The data Y1, . . . , Yn are i.i.d.

Mapping this example into the terminology from two slides

earlier: the distribution D(·|θ) can be dissected like:

I D is a placeholder for the Bernoulli distribution

I θ is a placeholder for p



Let’s derive the likelhood function

We start with the likelihood for Y1:

Pr(Y1 = 1) = p

and Pr(Y1 = 0) = 1− p

therefore

Pr(Y1 = y1) = py1(1− p)1−y1 , for y1 ∈ {0, 1}

The last result is just a cute way of compressing the likelihood

into one single line

So far, this is merely the marginal likelihood for person i

We need to derive the joint likelihood for all persons. . .



Let’s add person 2 now

We are savvy and exploit independence between

persons 1 and 2; joint likelihood becomes

Pr(Y1 = y1, Y2 = y2) = Pr(Y1 = y1)× Pr(Y2 = y2)

= [py1(1− p)1−y1 ]× [py2(1− p)1−y2 ]

= py1+y2(1− p)2−(y1+y2)

Escalating further, we get joint likelihood for all persons:

Pr(Y1 = y1, . . . , Yn = yn)

= Pr(Y1 = y1)× . . .× Pr(Yn = yn)

= [py1(1− p)1−y1 ]× . . .× [pyn(1− p)1−yn ]

= p∑n
i=1 yi(1− p)n−∑n

i=1 yi



We have just derived the likelihood function:

L(p|Y1, . . . , Yn) = p∑n
i=1 yi(1− p)n−∑n

i=1 yi

To get the maximum likelihood estimator for p we now need to

maximize L(p|Y1, . . . , Yn)

To do that, it is often easier to work with the logarithm of L
(this is called the log-likelihood, denoted ln L)

Because the logarithm is a monotone transformation, the

maximizer of ln L coincides with the maximizer of L

We can therefore re-define the maximum likelihood estimator

to be the argmax of the log-likelihood



In our example, because

L(p|Y1, . . . , Yn) = p∑n
i=1 yi(1− p)n−∑n

i=1 yi

⇒ ln L(p|Y1, . . . , Yn) =

[
n

∑
i=1

yi

]
ln p +

[
n−

n

∑
i=1

yi

]
ln (1− p)

Obtaining the first derivative of ln L
∂ln L(p|Y1, . . . , Yn)

∂p
=

[
n

∑
i=1

yi

]
1
p
+

[
n−

n

∑
i=1

yi

]
−1

1− p

Setting equal zero results in the MLE

0 =

[
n

∑
i=1

yi

]
1

p̂MLE
+

[
n−

n

∑
i=1

yi

]
−1

1− p̂MLE

Cleaning up, you will find that. . .



p̂MLE =
1
n

n

∑
i=1

yi =: Ȳ

In other words: when Yi is i.i.d. Bernoulli, the MLE is equal to

the sample average

This summarizes the MLE primer

Probit and logit models are also estimated using the MLE

approach

This will be a little bit more complicated than the Bernoulli

example presented here

But it is still not all too difficult
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I will illustrate the main idea using the probit model

Now we also have one explanatory variable Xi

(generalizing to k explanatory variables would not be difficult)

Pr(Yi = 1|Xi) = Φ(β0 + β1Xi)

How can we estimate β0 and β1?

What is the sampling distribution of the estimators?

How can we construct standard errors?

Answer: use maximum likelihood estimation



In analogy to the Bernoulli example earlier, we first derive the

likelihood for person 1

Given the explanatory variable X1 that likelihood is equal to

Pr(Y1 = 1|X1) = Φ(β0 + β1X1)

Pr(Y1 = 0|X1) = 1−Φ(β0 + β1X1)

combining in one line results in

Pr(Y1 = y1|X1) = Φ(β0 + β1X1)
y1 [1−Φ(β0 + β1X1)]

1−y1

We read this as a function in the two parameters β0 and β1

The probit likelihood function is the joint density of Y1, . . . , Yn

given X1, . . . , Xn, treated as a function of β0, β1



Let’s add person 2 now

Again we are exploiting independence between persons

Pr(Y1 = y1,Y2 = y2|X1, X2)

= Pr(Y1 = y1|X1)× Pr(Y2 = y2|X2)

= Φ(β0 + β1X1)
y1 [1−Φ(β0 + β1X1)]

1−y1×

Φ(β0 + β1X2)
y2 [1−Φ(β0 + β1X2)]

1−y2

Escalating further, we get joint likelihood for all persons

Pr(Y1 = y1,Y2 = y2, . . . , Yn = yn|X1, X2, . . . , Xn)

=Φ(β0 + β1X1)
y1 [1−Φ(β0 + β1X1)]

1−y1×

Φ(β0 + β1X2)
y2 [1−Φ(β0 + β1X2)]

1−y2×
...

...

Φ(β0 + β1Xn)
yn [1−Φ(β0 + β1Xn)]

1−yn



We have just derived the likelihood function:

L(β0, β1|Y1, . . . , Yn, X1, . . . , Xn) =

=Φ(β0 + β1X1)
y1 [1−Φ(β0 + β1X1)]

1−y1×

Φ(β0 + β1X2)
y2 [1−Φ(β0 + β1X2)]

1−y2×
...

...

Φ(β0 + β1Xn)
yn [1−Φ(β0 + β1Xn)]

1−yn

To get the maximum likelihood estimator for β0, β1 we now

need to maximize L(β0, β1|Y1, . . . , Yn, X1, . . . , Xn)

Again use log-likelihood

β̂0 and β̂1 maximize this likelihood function

But we can’t solve for the maximum explicitly!

Must be maximized using numerical methods



Luckily, Stata will solve this for us

Maximum Likelihood Estimation has some desirable

theoretical properties

In large samples β̂0 and β̂1 are

I consistent

I normally distributed

I efficient

(assuming the probit model is actually the correct model)

Computation of standard errors is also done by Stata

(the actual derivation goes beyond EMET3004)

Once you accept Stata’s standard errors, testing and confidence

interval construction proceed as ususal
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I Mortgages (home loans) are an essential part of buying a

home

I Is there differential access to home loans by race?

I If two otherwise identical individuals, one white and one

black, applied for a home loan, is there a difference in the

probability of denial?



HMDA Data Set

I Data on individual characteristics, property characteristics,

and loan denial/acceptance

I The mortgage application process circa 1990-1991:

I go to a bank or mortgage company
I fill out an application (personal and financial info)
I meet with the loan officer

I Then the loan officer decides, by law, in a race-blind way

I Presumably, the bank wants to make profitable loans, and

(if the incentives inside the bank or loan origination office

are right - a big if during the mid-2000s housing bubble!)

the loan officer doesn’t want to originate defaults



Loan Officer’s Decision

I uses key financial variables:
I P/I ratio
I housing expense-to-income ratio
I loan-to-value ratio
I personal credit history

I decision rule is nonlinear:
I loan-to-value ratio > 80%
I loan-to-value ratio > 95% (what happens in default?)
I credit score



We will study: Pr(deny = 1|black, other X′is)

Compare the three models

I linear probability model

I probit

I logit

Main problem with last week’s results: omitted variable bias

The following variables enter the loan officer decision and may

be correlated with race:

I wealth, type of employment

I credit history

I family status

Fortunately, the HMDA data set is very rich. . .













Summary of HDMA Results

I Coefficients on the financial variables make sense

I Black is statistically significant in all specifications

I Race-financial variable interactions are not significant

I Including the covariates sharply reduces the effect of race

on denial probability

I LPM, probit, logit: similar estimates of effect of race on the

probability of denial

I Estimated effects are large in a “real world” sense
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