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Logistics for week 12

We will return assignment 2 in today’s tutorial

You can keep your assignment and take it with you

However, if you want to qualify for a remark you need to:

I raise and explain any concerns regarding the marking with

your tutor as soon as possible during the week 12 tutorial

I hand your assignment back to your tutor by the end of the

week 12 tutorial

Once you leave the tutorial room with your assignment, you

cannot as for a remark



Uncollected assignments

I keep ALL uncollected assignments, swing by to collect yours!

If you want to be able to get a remark on an uncollected

assignment 2, please collect it from me before 2 November

Any assignment 2 collected later than that cannot get a remark!

You cannot get a remark on an uncollected assignment 1

anymore



Tutorial participation

I will post marks on Wattle by end of week 12

I you can contest your participation mark until 2 November

(by sending me an e-mail), no remarks thereafter



Exam consultation

Final exam consultation is available on the following days:

I Friday 2 November, 11am - 12pm, Arndt 1022

I Friday 9 November, 11am - 12pm, Arndt 1022

I Monday 12 November, 10am - 12pm, CBE tutorial room 7

No other consultations are offered

We do not help with practice exams!

I will NOT use e-mail for consultation!



Final Exam

Reminder: absolutely everything is examinable!

This includes the material from today’s lecture



Roadmap

Introduction

Panel Data Estimation

Clustered Standard Errors

Closing Remark



Using panel data, we can extend our standard linear model to

look like this:

Yit = β0 + β1Xit + αi + λt + uit

(Note: including more explanatory variables is easy)

There are three error terms here: αi, λt and uit

As usual, error terms only pose problems to the extent that they

are correlated with Xit

If αi and λt are correlated with Xit then panel data will solve

this problem

If uit is correlated with Xit then panel data will not help



Under a panel data version of the least squares assumptions,

the OLS fixed effects estimator of β1 is normally distributed

However, a new standard error formula needs to be

introduced: the “clustered” standard error formula

This new formula is needed because observations for the same

entity are not independent (it’s the same entity!)

Having said that, observations across different entities are still

assumed independent



Consider the generic panel data model with entity fixed effects

(for simplicity we are ignoring λt)

Yit = β0 + β1Xit + αi + uit

The four OLS assumptions adapted to the panel data model

1. E(uit|Xi1, . . . , XiT, αi) = 0

2. (Xi1, . . . , XiT, Yi1, . . . , YiT), i = 1, . . . , n
are i.i.d. draws from their joint distribution

3. (Xit, Yit) have finite fourth moments

4. heteroskedasticity



Assumption 1: E(uit|Xi1, . . . , XiT, αi) = 0

I uit has mean zero, given the entity fixed effect and the

entire history of the X’s for that entity

I This means there are no omitted lagged effects

(any lagged effects of X must enter explicitly)
I Also, there is not feedback from u to future X:

I Whether a state has a particularly high fatality rate this year
doesn’t subsequently affect whether it increases the beer tax

I Sometimes this “no feedback” assumption is plausible,
sometimes it isn’t



Assumption 2: (Xi1, . . . , XiT, Yi1, . . . , YiT) are i.i.d. draws from

their joint distribution

I This is satisfied if entities are randomly sampled from their

population by simple random sampling

I This does not require observations to be i.i.d. over time for

the same entity

(that would be unrealistic)

I Example: Whether a state has a high beer tax this year is a

good predictor of (correlated with) whether it will have a

high beer tax next year.

I Put differently, the error term for an entity in one year is

plausibly correlated with its value in the year, that is,

corr(uit, uit+1) is often plausibly nonzero



Under the LS assumptions for panel data

I The OLS fixed effect estimator β̂1 is unbiased, consistent,

and asymptotically normally distributed

I However, the usual OLS standard errors (both

homoskedasticity-only and heteroskedasticity-robust) will

in general be wrong because they assume that uit is serially

uncorrelated

I In practice, the OLS standard errors often understate the

true sampling uncertainty: if uit is correlated over time,

you don’t have as much information (as much random

variation) as you would if uit were uncorrelated

I This problem is solved by using “clustered” standard

errors



Clustered Standard Errors

I Clustered standard errors estimate the variance of β̂1 when

the variables are i.i.d. across entities but are potentially

autocorrelated within an entity

I Clustered SEs are easiest to understand if we first consider

the simpler problem of estimating the mean of Y using

panel data. . .



Let me present the following “toy model” to illustrate the main

idea

Yit = β0 + uit,

A reasonable estimator for β0 would be the sample average

across entities and time:

Ȳ =
1
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n

∑
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∑
t=1

Yit

It is useful to write Ȳ as the average across entities of the mean

value for each entity:
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where Ȳi =
1
T ∑T

t=1 Yit is the sample mean for entity i



Because observations are i.i.d. across entities,

(Ȳ1, . . . , Ȳn) are i.i.d.

Thus, if n is large, the CLT applies and:

Ȳ =
1
n
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∑
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Ȳi
approx.∼ N
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β0,

σ2
Ȳi

n

)
, where σ2

Ȳi
= Var

(
Ȳi
)

I The SE of Ȳ is the square root of an estimator of
σ2

Ȳi
n

I Natural estimator of σ2
Ȳi

given by sample variance of Ȳi:

s2
Ȳi
= 1

n−1 ∑n
i=1(Ȳi − Ȳ)2

This delivers the clustered standard error formula for Ȳ
computed using panel data: SE

(
Ȳ
)

clustered = sȲi
/
√

n



What’s special about clustered SE?

I Not much, really - the previous derivation is the same as in

EMET2007 when we derived the SE for the sample average

(except that here the “data” are i.i.d. entity averages

(Ȳ1, . . . , Ȳn) instead of a single i.i.d. observation for each

entity.

I But there is one more subtle difference:

in the cluster SE derivation we never assumed that

observations are i.i.d. within an entity

I Thus we have implicitly taken care of the possibility of

serial correlation within an entity

I Where exactly did this happen?
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Now compare SE
(
Ȳ
)

clustered to SE
(
Ȳ
)

Friendly reminder from EMET2007:

SE
(
Ȳ
)

:= sY/
√

n

where s2
Y :=

1
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Juxtaposing the clustered version:
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Ȳi
=

1
T2

T

∑
t=1

T

∑
s=1

[
1

n− 1

n

∑
i=1
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If T = 1, they would be the same

Generally, s2
Y does not include any autocovariance terms



The clustered version, sȲi
on the other hand does

To see this, look at the final term in brackets:
1

n− 1

n

∑
i=1

(Yit − Ȳ)(Yis − Ȳ)

Whenever s 6= t, that term represents the sample

autocovariance of order |s− t|

For example, when s = 2 and t = 5 then that term captures the

third order autocovariance (because 5− 2 = 3)

Whenever s = t, that term represents the variance



Thus the clustered SE formula implicitly is estimating all the

autocovariances, then using them to estimate σ2
Ȳi

In contrast, the “usual” SE formula zeros out these

autocovariances by omitting all the cross terms - which is only

valid if those autocovariances are all zero

Now, extending this to panel data, the notation gets a lot more

messy

But the general idea remains the same



The End

It’s been a pleasure teaching you!

Really!
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