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Stata

For those of you who are not familiar with Stata:

I Visit the class website and click on “Stata help”

I There you will find resources to teach yourself Stata

I Dedicate some time to teach yourself Stata

I Feel free to stop by my office if you need help

I I’m also happy to use the weekly computer tutorials to

answer your Stata related questions



Problem Solving Tutorial

Unlike in EMET2007, there is no separate dedicated problem

solving tutorial in EMET3004

During the first half of the semester, I will use the last 15 or 20

minutes during lectures to work through some problem solving

exercises
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The problem of statistical inference can be expressed like this:

I we want to learn something about the population

I but we do not observe the population

I instead we only observe a random sample drawn from the

population

I the random sample is a subset of the population

I we need to use that random subset to approximate the

population



Definition

The problem of statistical inference consists of using a random

sample to learn about statistical parameters of the unobserved

population.

What do we mean by ‘statistical parameters’?

I mean

I variance

I moments

In at least 80% of all cases we are interested in the mean



Example: What is the mean weight of Tidbinbilla roos?

Suppose the park rangers want to know the answer to that

question and hire us to come up with an answer

They give us permission to randomly collect 30 roos

(It is out of the question to collect ALL roos, we therefore do

not observe the entire population)

Wouldn’t it seem reasonable to use the average weight in our

sample as our best guess of the mean weight of Tidbinbilla

roos?



The roo example illustrates common terminology

I We want to learn about the population mean E[Y]

I We have no hope of knowing this mean

b/c we do not observe the entire population

I the population mean is unobserved

I we do, however, observe the sample average Ȳ

I We use Ȳ as an estimator of the population mean

I Given our particular random sample of 30 roos,

the sample average takes on the value of, say, 70kg

I That value is our estimate of the population mean
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In regression analysis, we study the relationship between

several variables

At the very minimum, we study the relationship between X
and Y

Actually, we study how X affects Y
(not the other way around)

More precisely, we want to quantify the causal effect of X on Y



In each application, we posit that we are interested in some

causal effect

We use OLS as our tool to estimate that causal effect

The concept of causal effect is key to EMET2007 and EMET3004

It is important that you understand it well

Behind every estimation that we run is the hope that we

estimate some interesting causal effect

But let’s be more precise about what we mean by causal

effect. . .



Recall from EMET2007 (lecture 3) that we think of the

relationship between X and Y as follows:

Yi = f (Xi, ui),

where

I f (·) is the response function

I Yi is the dependent variable

I Xi is the independent variable

I ui is the error term

Xi and Yi are observed in the data; ui is unobserved

Remember: ui captures all other things that explain Yi

(over and above Xi)



Digression: why do we need to include ui?

If we did not include ui as part of the function f (·) then we

would presume that the relationship b/w Yi and Xi was

deterministic

It would mean that once we know Xi we also know Yi

This is almost like saying that they are one and the same thing

Deterministic relationships often make sense in the natural

sciences, example: relationship b/w Celsius and Fahrenheit

In economics, relationships b/w variables are never

deterministic but are subject to some degree of randomness and

the presence of the error term ui allows for that



We are now ready to define what we mean by causal effect:

Definition

Let x be some real number. The individual causal effect of X
on Y is given by

∆(x, ui) := f (Xi = x + 1, ui)− f (Xi = x, ui).

Intuition:

change in the function value as Xi is increased by 1 from x,

keeping all unobserved factors ui constant

The causal effect depends on the starting value x and on

unobserved factors ui



From EMET1001 you should know that mathematically

speaking, ∆(x) is the difference quotient of the function f (·)

The difference quotient measures the finite slope of a function

The causal effect therefore is the slope at X = x of the response

function f (·) with respect to X

That should be intuitive:

the slope captures the notion of responsiveness of a function

with respect to its argument

This is what the notion of causal effect is supposed to capture



My definition of causal effect is based on a discrete random

variable Xi

Alternatively, I could have defined the causal effect based on a

continuous random variable

Then I would have defined the causal effect as the derivative

with respect to Xi

This is slightly more complicated but does not yield any extra

insights



Example

Let’s say we are interested in the relationship between earnings

and heights (we have looked at that in EMET2007, remember?)

Specifically:

I Xi: height of person i

I Yi: hourly wage of person i

Then f (Xi, ui) is the function that maps heights and unobserved

stuff ui into earnings

What is the causal effect?



I could be interested in the following causal effect

∆(172, ui) := f (Xi = 173, ui)− f (Xi = 172, ui)

Intuition:

By how much would earnings for person i, who is 172 cm tall

and has unobservables ui, increase if s/he had been 1 cm taller?

(Why would you think that this is an interesting research

question?)



Alternatively, I could be interested in the causal effect

∆(182, ui) := f (Xi = 183, ui)− f (Xi = 182, ui)

Intuition:

By how much would earnings for person i, who is 182 cm tall

and has unobservables ui, increase if s/he had been 1 cm taller?

The causal effect depends on the starting value x, so generally

∆(172, ui) 6= ∆(182, ui)

It is an individual causal effect because it depends on a person’s

individual unobserved value ui



More examples of causal effects we have studied in EMET2007

I Causal effect of smoking during pregnancy on birth

outcomes of babies

I Causal effect of trade openness of countries on real gdp

growth rate

I Causal effect of race on job interview success rates in

Australia

I Causal effect of lead consumption on infant mortality
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What have we just learned?

Causal effects are the things we are after

But how do we learn about them?

It turns out that once we impose a specific structure on the

function f (·), the causal effect can easily be identified

You know from EMET2007 that we impose linearity on f (·)



Let f (Xi, ui) = β0 + β1Xi + ui

Then it is easy to derive that

∆(x, ui) = β1

This results looks innocuous at first, but actually is a bit more

profound than it looks:

I Once you impose linearity, the causal effect is not

effectively a function in x and ui anymore

I The causal effect does not depend on the particular value

that Xi takes on

I The causal effect is the same for all subjects (e.g. people)

For that reason we now refer to it as the average causal effect



Linearity imposes the notion of ’averageness’:

the population parameter β1 is the causal effect for the average

person in the sample

This result is so important that we dedicate a theorem to it:

Theorem

In the linear model, the coefficient β1 captures the
average causal effect of X on Y.



Going back to the example of earnings and heights, we looked

at the two individual causal effects

∆(172, ui) := f (Xi = 173, ui)− f (Xi = 172, ui)

∆(182, ui) := f (Xi = 183, ui)− f (Xi = 182, ui)

Once we impose linearity (that is, f (Xi, ui) = β0 + β1Xi + ui,)

this collapses to

∆(172, ui) = ∆(182, ui) = β1

The causal effect of growing by one centimeter is effectively

assumed to be the same for every person in the sample

Another way to think of this is that β1 measures the effect of

growing by one centimeter for the average person in the sample
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The parameter β1 is the population regression coefficient

Because we do not observe the population, we do not know β1

How can we learn about it?



Learning about an unknown population coefficient is the goal

of statistical inference (as we have seen last week)

When the unknown population coefficient is part of a linear

model, then there is one dominant method to learn about the

unknown population coefficient: estimation via OLS

The whole point of EMET2007 was to expose you to OLS

estimation

OLS is one of many ways to estimate β1

Let’s do a brief review of OLS and its properties . . .



(EMET2007 lecture 4)

Definition

The Ordinary Least Squares (OLS) estimators are defined by

β̂0, β̂1 := argmin
b0,b1

n

∑
i=1

(Yi − b0 − b1Xi)
2

In words

I we look at the rhs as a function in b0 and b1

I that function happens to be quadratic

I we find the values of b0 and b1 that minimize that function

I the values that minimize that function are called solution

I we give the solution a specific name: β̂0 and β̂1



Geometry of the minimization problem

The single point at the very bottom (the unique minimum) is

denoted (β̂0, β̂1)



Digression

In today’s lecture I only use the simple linear regression model

I could have used the multiple linear regression model (with

alltogether k regressors) instead

Using the simple model instead of the multiple model is

without loss of generality

Using the simple model makes the notation a little bit easier

The key ideas and the math carries through straightforwardly



The mathematics of finding the solution

The basic approach is multivariate calculus which you know

from high school or EMET1001 or both

First step: differentiate ∑n
i=1(Yi − b0 − b1Xi)

2 wrt b0, b1

Second step: set derivatives equal zero (obtain the foc)

Third step: solve

Fourth step: clean up



End result:

β̂0 = Ȳ− β̂1X̄

β̂1 =
∑n

i=1(Yi − Ȳ)(Xi − X̄)

∑n
i=1(Xi − X̄)2

The OLS estimator of the slope is equal to the ratio of sample

covariance and sample variance!

The OLS estimators are functions of the sample data only

Given the sample data (Xi, Yi) we can first compute the rhs for

β̂1 and then we can compute the rhs for β̂0

Computer programs such as Stata easily calculate the rhs for

you
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Given an infinitely large set of possible estimators for β1, why

would we use this complicated looking OLS procedure?

As you know already, it turns out that the OLS estimator has

some desirable properties

We assess ‘goodness’ of an estimator by three properties:

1. bias

2. variance

3. consistency

Let’s look at these in turn



Definition

An estimator θ̂ for an unobserved population parameter θ is

unbiased if its expected value is equal to θ, that is

E[θ̂] = θ

If we draw lots of random samples of size n we obtain lots of

estimates θ̂1, θ̂2, θ̂3, . . .

If the estimator θ̂ is unbiased, then the mean of these estimates

will be equal to θ

Note that this is only a thought exercise, in reality we will not

draw lots of random samples (we only have one available)



Definition

An estimator θ̂ for an unobserved population parameter θ has

minimum variance if its variance is (weakly) smaller than the

variance of any other estimator of θ. Sometimes we will also

say that the estimator is efficient.



In EMET2007 I gave this definition of consistency:

Definition

An estimator θ̂ for an unobserved population parameter θ is

consistent if it converges in probability to θ.

Consistency is difficult to understand

Here is a useful way to look at it:

If, in a thought experiment, you observe the entire population

and apply your estimator to it, you want the resulting estimate

to be equal to θ



Let’s be slightly more technical (and therefore more precise)

Definition (Convergence in Probability)

Let θ̂ be an estimator of θ. We say that θ̂ converges in

probability to θ if

Pr(|θ̂ − θ| > ε)→ 0 for all ε > 0.

We write θ̂
p→ θ and say that θ̂ is a consistent estimator of the

population parameter θ.



Unbiasedness and consistency can seem like the same thing

But they aren’t

(admittedly, they ’feel’ similar)

Key distinction:

I consistency is a probabilistic statement about the estimator

I consistency asks, what would you be estimating if you had

an infinitely sized random sample available?

I unbiasedness is a statement about the expected value of

the estimator

We’ll study that distinction at the end of today’s lecture



Important result about the ’goodness’ of the OLS estimator:

(EMET2007 lecture 6)

Theorem

Under OLS Assumptions 1 through 4a, the OLS estimator

β̂0, β̂1 := argmin
b0,b1

n

∑
i=1

(Yi − b0 − b1Xi)
2

is BLUE.

The Gauss-Markov theorem provides a theoretical justification

for using OLS



Digression: do you remember the 4 Assumptions?

1. conditional mean independence (CMI):

E[ui|Xi] = E[ui]

2. sample data are i.i.d. draw from population distribution

3. finite fourth moments (large outliers are unlikely)

4. homoskedasticity



Putting together the pieces of the puzzle:

I our research objective is the causal effect of Xi on Yi

I generically there exists a functional relationship between

the two: Yi = f (Xi, ui)

I to make our lives easier, we assume that f (·) is linear

I then the causal effect boils down to the parameter β1 and

can be interpreted as the average causal effect

I to estimate that parameter we use OLS

I we obtain the estimate β̂1 which is our estimate of the

causal effect β1

I by the Gauss-Markov theorem, the estimate β̂1 is ’good’ as

long as the four OLS Assumptions are satisfied
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But what if some of the OLS Assumptions are not satisfied?

Then there is the risk that the OLS estimator β̂1 does not

correctly estimate the average causal effect β1

Statistical inference using OLS may be flawed in that case

In the worst case, we may make completely false inferences

about the average causal effect

We are in a bad place: our big goal was to learn something

about the average causal effect but we have now arrived at a

point at which all our efforts could be in vain



What exactly do we mean when we say that the OLS estimator

may not correctly estimate the average causal effect?

Definition (Internal Validity)

A statistical analysis is internally valid if statistical inferences

about causal effects are valid for the population being studied.

The associated estimator is said to have internal validity.

For the next few weeks, we concern ourselves with situations

in which the OLS estimator is not internally valid

In these cases, we cannot use OLS to learn about the average

causal effect



But when exactly is the OLS estimator internally valid?

(and when is it not?)

Theorem

The OLS estimator is internally valid if it is unbiased and consistent.

But when is the OLS estimator unbiased and consistent?

Theorem

The OLS estimator is unbiased and consistent only under OLS
Assumption 1.



Connecting the dots:

If OLS Assumption 1 is indeed ’true’, then the OLS estimator is

internally valid. Otherwise it is not internally valid.

In the next few weeks we will become experts at understanding

when OLS Assumption 1 is ’true’ and when it is not

We will learn what to do when it is not true



Problem Solving Exercises

1. Let Yi ∼ i.i.d.(µ, σ2). You know from EMET2007 that Ȳ is

an unbiased and consistent estimator for the population

mean µ. Are the following estimators also unbiased or

consistent for µ? Discuss!

(i) µ̂2 := 42 (’answer to everything’ estimator)

(ii) µ̂3 := Ȳ + 3/n

(iii) µ̂4 := (Y1 + Y2 + Y3 + Y4 + Y5)/5
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