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Assignment 1

You can already start working on Assignment 1

Exercise 1 of the assignment only requires knowledge of OLS

(stuff you’ve learned in EMET2007 and/or STAT2008)

Deadline: 29 August at 12:00pm (noon, mid-day)

Reminder: my deadlines are very sharp!

(If you submit at 12:01pm you will receive a mark of zero!)

No extensions given under any circumstances!

Note: I do not offer any help on solving the assignment!



Computer tutorials

Starting today, Simon Mishricky will be teaching the tutorials

Simon is friendly and clever, should be fun and educational
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At the end of the last lecture, we looked at three important

statements:

I A statistical analysis is internally valid if statistical

inferences about causal effects are valid for the population

being studied.

I We aim to have estimates that are internally valid.

I The OLS estimator is internally valid if it is unbiased and

consistent.

I The OLS estimator is unbiased and consistent only under

OLS Assumption 1.

Important question to ask:

When is OLS Assumption 1 not satisfied?
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Assumption (OLS Assumption 1)

The error term ui is conditionally mean independent (CMI) of Xi

E[ui|Xi] = E[ui] = µu.

Assumption 1 says that Xi is not informative about the

expected value of ui

This would be guaranteed if Xi and ui were independent

When would they be independent?

For example, if Xi and/or ui are purely random

But are they?



OLS Assumption 1 is also sometimes called the Exogeneity
Assumption

Whenever OLS Assumption 1 doesn’t hold, we deal with the

problem of endogeneity

There are essentially 5 reasons for why the exogeneity

assumption might fail

1. Omitted variable bias

2. Wrong functional form

3. Errors-in-variables bias

4. Sample selection bias

5. Simultaneous causality bias

Let’s talk about these in turn. . .
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Consider the following multiple linear regression model

Yi = β0 + β1X1i + β2X2i + ui

According to this model, we should regress Y on X1 and X2 to

obtain OLS estimates of β1 and β2

But suppose we only have data on X1i and Yi

We know (for some reason) that the variable X2i should also be

included in the model but the data set does not contain it

Therefore, all we can do is regress Yi on X1i

How does this affect the OLS estimator for β1?



To find out, rewrite the model as follows

Yi = β0 + β1X1i + β2X2i + ui

= β0 + β1X1i + (β2X2i + ui)

= β0 + β1X1i + vi,

where vi := β2X2i + ui denotes a new error term

In general, vi 6= ui (because β2 6= 0)

The last equation now looks like a simple linear regression

model in which the error term is called vi



Given Yi = β0 + β1X1i + vi, the OLS estimator of β1 is

β̂1 =
∑n

i=1(Yi − Ȳ)(X1i − X̄1)

∑n
i=1(X1i − X̄1)2

The first factor in the numerator can be expanded like

Yi − Ȳ = β1(X1i − X̄1) + (vi − v̄)

and plug in to get (after some simplifications)

β̂1 = β1 +
∑n

i=1(X1i − X̄1)(vi − v̄)
∑n

i=1(X1i − X̄1)2

Typically, the argument now would be that X1i and error term

vi are uncorrelated so that ∑n
i=1(X1i − X̄1)(vi − v̄) is almost zero



Big problem here:

this particular error term is not uncorrelated with X1i

Recall that vi is not just any random error

It also contains X2i because vi := β2X2i + ui

It has two components

I ui which is purely random and uncorrelated with X1i

I X2i which is an omitted regressor which could well be

correlated with X1i

If X1i and X2i are correlated with each other than the error term

vi will be correlated with X1i



This will lead to bias in the OLS estimate β̂1

Going back to our previous result

β̂1 = β1 +
∑n

i=1(X1i − X̄1)(vi − v̄)
∑n

i=1(X1i − X̄1)2

If we are interested in the expected value of β̂1, E[β̂1|X1i, X2i],

the second term on the rhs will not be equal to zero

Instead, we get . . .



E
[
β̂1|X1i, X2i

]
= β1 +

∑n
i=1 E [(X1i − X̄1)(vi − v̄)|X1i, X2i]

∑n
i=1(X1i − X̄1)2

= β1 +
∑n

i=1 E [(X1i − X̄1)(β2(X2i − X̄2) + (ui − ū))|X1i, X2i]

∑n
i=1(X1i − X̄1)2

= β1 + β2
∑n

i=1(X1i − X̄1)(X2i − X̄2)

∑n
i=1(X1i − X̄1)2

+
∑n

i=1(X1i − X̄1)E [(ui − ū)|X1i, X2i]

∑n
i=1(X1i − X̄1)2

= β1 + β2
∑n

i=1(X1i − X̄1)(X2i − X̄2)

∑n
i=1(X1i − X̄1)2

' β1 + β2
E[(X1i − µX1)(X2i − µX2)]

Var(X1i)

= β1 + β2
Cov(X1i, X2i)

Var(X1i)
,



The second equality holds because

vi := β2X2i + ui and v̄ = β2X̄2 + ū

The third equality holds because X1i and X2i can be treated as

constants

The fourth equality holds because of exogeneity

(we will learn that this is OLS Assumption 1 in the multiple

linear regression model next week)

To get the asymptotic result just replace sample averages by

population averages



This shows that the expected value of β̂1 is not equal to β1

The OLS estimator β̂1 is therefore not unbiased

What is the bias equal to?

This bias term is Cov(X1i, X2i)/Var(X1i)

Intuitively, this bias is proportional to the covariance between

X1i and X2i and inversely proportional to the variance of X1i

The omitted variables bias could be positive or negative:

it depends on the sign of the covariance between X1i and X2i



If you do not like the mathematics of it, maybe you prefer to

understand it intuitively

If you omit X2i from the estimation, then the estimate of β1 will

be biased

The reason for this is that the estimator β̂1 is doing two jobs at

the same time:

I it captures the direct effect of X1i on Y
(this is what you want to capture; it’s the effect β1)

I but it also captures the indirect effect that X2i has through

its covariance with X1i

(this creates the bias)
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Recall the generic regression response function from last week:

Yi = f (Xi, ui)

In the linear model, we simply force f (·) to be linear in all

arguments

f (Xi, ui) = β0 + β1Xi + ui

(this is easily generalized to a model with additional

regressors)

But what if f (·) isn’t actually linear?



For example, what would the OLS estimator β̂1 estimate,

if f (·) was a higher order polynomial in Xi?

Answering this question requires some complicated math, I’ll

just give you the answer: β̂1 would be biased and inconsistent!

In other words, when the actual relationship between Yi and Xi

is nonlinear, then the OLS estimator is not internally valid



Example: You estimate the model

Yi = β0 + β1X1i + β2X2i + ui

and afterwards an oracle tells you that the true association

between Xi and Yi is

Yi = β0 + β1X1i + β2X8
2i + β3 log(X2i) + ui

Your estimate of β1 will be biased

Remedy: if you know the actual functional form, then you

could just throw X8
2i and log(X2i) into the regression

The problem in practice is that you never really now the correct

functional form



If you don’t know the actual functional specification of f (·)
then all you can do is cross your fingers!

Turns out, that’s what most people do when they run

regressions!

Another problem associated with functional form concerns the

dependent variable Yi

Even if f (·) was indeed linear, you could still have a

misspecified functional form if Yi is a categorical or a binary

variable

We will study this after the midterm break (book chapter 11)
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Elements of the data X1i, . . . , Xki, Yi may be measured

imprecisely

How does this create problems?

Example: Causal effect of heights on earnings

Yi = β0 + β1Xi + ui

where Yi are hourly wages and Xi are heights

(for simplicity, we ignore other regressors)

Heights may be measured imprecisely

That would be an example of Xi being measured with error



Instead of

I Xi (actual/true height)

we observe

I X̃i (reported height)

Most generally, we permit Xi 6= X̃i (for some i)

The relationship between the two is thought of as

X̃i := Xi + wi

In words: the reported height is equal to the true height plus

some unobserved error term

Reported height is a noisy measurement of true height



Why would this cause any problems?

At least two ways to think about the discrepancy between

X̃i and Xi:

I X̃i deviates from Xi for systematic reasons

Example: small persons tend to overstate their heights

while tall persons tend to report accurately

I X̃i deviates from Xi completely at random

(referred to as classical measurement error)

Which one of these two will result in bias OLS estimates of the

causal effect of height on earnings?



It seems obvious that systematic misreporting will bias the OLS

estimate

In the given example (small persons tend to exaggerate

heights), what is the bias?

Would OLS using reported heights result in an overestimate or

an underestimate of the actual causal effect of heights on

earnings?



What does not seem so obvious is that even the second type of

measurement error results in biased OLS estimates

Completely random measurement error creates so-called

classical measurement error bias

The formal result is

β̂1
p→ β1 − β1

σ2
w

σ2
X + σ2

w
= β1

σ2
X

σ2
X + σ2

w

In words: OLS is inconsistent

The bias term is −β1
σ2

w
σ2

X+σ2
w



Recall that wi was the random discrepancy between the true Xi

and the reported X̃i

The size of the bias depends on the relative variances of

Xi and wi

In the extreme case that the variance of wi is very large, the OLS

estimator converges in probability to zero, irrespective of what

the true population parameter β1 is equal to!

This demonstrates that random measurement error can be a big

problem

On the other hand, if σ2
w = 0, β̂1

p→ β1 and life is good again



So far we’ve discussed how measurement error in Xi leads

estimates that are not internally valid

But what if the measurement error is in Yi instead?

Does this create problems?
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Data are often missing

There are three ways to look at it:

1. Data are missing at random

2. Data are missing based on the value of one or more X

3. Data are missing based in part on the value of Y

Which of these lead to bias?



Data missing at random

Suppose I randomly sample 100 Canberrans and ask them to

fill out a survey asking for their earnings and height

I want to regress earnings on heights

There’s one catch:

my six year old daughter destroys the survey responses of 30

people (six year olds do such things for no good reason)

My daughter undertook her destructive efforts randomly



Luckily, my daughter did not introduce any bias:

her behavior is equivalent to me having sampled only 70

people in the first place

Effectively, I still have a random sample

It’s just a bit smaller

This increases the standard errors of the OLS estimates

But OLS Assumption 1 still applies



Data missing based on Xi

Suppose I randomly sample 100 Canberrans and ask them to

fill out a survey asking for their earnings and height

I still want to regress earnings on heights

There’s another catch:

I only let people participate if they are at least 175cm tall

This still does not result in bias because people are still

sampled randomly (as long as they are tall enough)

Obviously, I won’t be able to learn anything about people who

are smaller than 175cm

But my OLS estimates will be internally valid for the subset of

the population that is at least 175cm tall



Data missing based on Yi

Again, suppose I randomly sample 100 Canberrans and ask

them to fill out a survey asking for their earnings and height

My daughter does not destroy any survey responses and I

don’t only ask tall people for a response

Still, there will be a missing data problem

How so?



Missing data problem:

I can only observe earnings for people who have a job

When I run a regression of earnings on heights, I have to

exclude people who have no reported earnings because they do

not have a job

Typical example from the past: house wifes don’t have earnings

The problem is that whenever a person has no reported

earnings, we cannot assume that this is a random event

There may be a systematic reason for why the person does not

have any earnings



To demonstrate the problem, consider a slightly more modern

example:

A couple’s decision to have a baby

Both are young professionals (meaning: both working)

They decide that one of them will take a three year work leave

to tend to the baby

Who should take the work leave?

Purely based on opportunity cost, the one with the lower

earnings should stay at home



This example suggests that the subset of wage earners may be

biased: people who earn relatively more tend to stay in the

labor force

Conversely, people who earn relatively little tend to drop out

(at least temporarily)

This is an example of a non-random sample

People endogenously select themselves into (and out of) the

sample

The sample is not representative of the entire population

This is an example of (endogenous) sample selection

The resulting bias is called sample selection bias
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So far we have always presumed that Xi causes Yi

But what if the causation goes the other way?

Example: children’s height and parent’s earnings

You randomly sample 500 parents who have grown-up

children; you conduct a survey asking for

I parents earnings

I childrens’ heights

You regress earnings on heights

Is this sensible?



Regressing earnings on heights is informative about the

covariance between the two

But you should not give this a causal interpretation! (Obvious?)

Unlike in the example in which we regressed a person’s

earnings on own height, a child’s height cannot be causal for

the earnings of the parent (I hope you agree!)

Instead, economic research has provided ample evidence that

the children of well-earning parents grow taller

(because of better quality “production” inputs like nutritious

food and good education)

This was an example of causality from Yi to Xi

But how about causality in both directions at the same time?



Let’s say I am interested in estimating the causal effect of

lecture attendance on course outcomes

The primitive research question is:

Does lecture attendance improve grades?

Suppose I can accurately measure both lecture attendance and

grades

What problem do you see with the following regression:

Grades = β0 + β1Attendance + ui

Is the OLS estimator β̂1 internally valid for the causal effect β1?



Problem Solving Exercises

1. Properly define the individual causal effect in the more

general model with k independent variables.

2. What does the individual causal effect in the model with k
independent variables boil down to, once you impose

linearity?

3. Derive the classical measurement error bias.

(Hint: Frame the problem of classical measurement error

as an omitted variable bias problem and apply the ovb

results.)
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