Econometrics II: Econometric Modelling

Jürgen Meinecke

Research School of Economics, Australian National University

24 August, 2018

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Deadline: 29 August at 12:00pm (noon, mid-day)

Reminder: my deadlines are *very* sharp! (If you submit at 12:01pm you will receive a mark of zero!)

No extensions given under any circumstances!

Note: I do not offer any help on solving the assignment!

ション・ 「「 ・ ヨ ・ ィヨ ・ ィロ・

Roadmap

Introduction

Instrumental Variables Estimation

Asymptotic Distribution

The General IV Regression Model

Checking IV Relevance: Weak Instruments

Checking IV Exogeneity: Test of Overidentifying Restrictions

Example: Estimating the Demand for Cigarettes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let's still consider the simple linear model with one endogenous regressor and one IV

 $Y_i = \beta_0 + \beta_1 X_i + u_i$ where $E[u_i | X_i] \neq E[u_i]$

Last week we learned that the TSLS estimator has the form $\hat{\beta}_{1,TSLS} := \frac{\sum_{i=1}^{n} (\hat{X}_i - \bar{X}) (Y_i - \bar{Y})}{\sum_{i=1}^{n} (\hat{X}_i - \bar{X}) (\hat{X}_i - \bar{X})} = \frac{s_{\hat{X}Y}}{s_{\hat{X}}^2}$

We will prove that, alternatively, the TSLS estimator can be expressed like

$$\hat{\beta}_{1,TSLS} := \frac{\sum_{i=1}^{n} (Z_i - \bar{Z})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (Z_i - \bar{Z})(X_i - \bar{X})} = \frac{s_{ZY}}{s_{ZX}}$$

This last result is the basis for deriving the asymptotic distribution of $\hat{\beta}_1^{TSLS}$

Starting point of that derivation are the four OLS assumptions plus one additional assumption that is required for the IV

The IV regression assumptions are

- 1. $E[u_i|X_i] \neq E[u_i]$, that is X_i is endogenous
- 2. (Y_i, X_i, Z_i) are i.i.d.
- 3. X_i , Y_i , Z_i all have nonzero, finite 4th moments
- 4. heteroskedasticity
- 5. Z_i is a valid IV

Instead of deriving the asymptotic distribution, we just state the result...

ション・ 「「 ・ ヨ ・ ィヨ ・ ィロ・

Theorem (Asymptotic Distribution of TSLS Estimator)

The asympototic distribution of the TSLS estimator $\hat{\beta}_1^{TSLS}$ under IV regression assumptions 1 through 5 is $\hat{\beta}_1^{TSLS} \stackrel{approx.}{\sim} N\left(\beta_1, \frac{1}{n} \frac{Var\left((Z_i - \mu_Z)u_i\right)}{(Cov(Z_i, X_i))^2}\right)$

Standard errors follow readily:

$$SE(\hat{\beta}_1^{TSLS}) = \frac{s_{uZ}}{\sqrt{n}s_{XZ}}$$

where
$$s_{uZ}^2 := \frac{1}{n}\sum_{i=1}^n \left((Z_i - \bar{Z})\hat{u}_i \right)^2$$
$$s_{XZ} := \frac{1}{n}\sum_{i=1}^n (X_i - \bar{X})(Z_i - \bar{Z})$$

These are the se that Stata's ivregress command calculates

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 善臣 ∽のへ⊙

The derivation of the asymptotic distribution is not that difficult

It's similar to the derivation of the asymptotic distribution of the OLS estimator under heteroskedasticity during lecture 8 of last semester's EMET2007

A simple comparison between the asymptotic distributions of the OLS estimator from last semester and the TSLS estimator from this semester is illustrative...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recall (from last semester) that the OLS estimator was given by

$$\hat{\beta}_{1,OLS} := \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})} = \frac{s_{XY}}{s_{XX}}$$

Its asymptotic distribution was

$$\hat{\beta}_1 \overset{approx.}{\sim} \operatorname{N}\left(\beta_1, \frac{1}{n} \frac{\operatorname{Var}\left((X_i - \mu_X)u_i\right)}{(\operatorname{Cov}(X_i, X_i))^2}\right)$$

In comparison, the TSLS estimator was given by $\hat{\beta}_{1,TSLS} := \frac{\sum_{i=1}^{n} (Z_i - \bar{Z})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (Z_i - \bar{Z})(X_i - \bar{X})} = \frac{s_{ZY}}{s_{ZX}}$

Its asymptotic distribution was

$$\hat{\beta}_{1}^{TSLS} \stackrel{approx.}{\sim} \mathrm{N}\left(\beta_{1}, \frac{1}{n} \frac{\mathrm{Var}\left((Z_{i} - \mu_{Z})u_{i}\right)}{\left(\mathrm{Cov}(Z_{i}, X_{i})\right)^{2}}\right)$$

・ロト・(四)・(日)・(日)・(日)

Digression: why are the standard errors incorrect when we calculate the TSLS estimator in two separate steps in Stata (rather than using the inbuilt ivregress command)?

The main idea of the first stage in TSLS is to extract the exogenous part of X_i

ション (日本) (日本) (日本) (日本) (日本)

Literally, that exogenous part is $\tilde{X}_i := \pi_0 + \pi_1 Z_i$

But we do not know the π_0 and π_1

Instead we have to estimate them by $\hat{\pi}_0$ and $\hat{\pi}_1$

Then we calculate $\hat{X}_i := \hat{\pi}_0 + \hat{\pi}_1 Z_i$

Because $\hat{\pi}_0 \neq \pi_0$ and $\hat{\pi}_1 \neq \pi_1$ it follows that $\hat{X}_i \neq \tilde{X}_i$

This shows that \hat{X}_i is a noisy measurement of \tilde{X}_i

The estimate \hat{X}_i itself has a sampling distribution which needs to be accounted for when using it in the second stage regression

When doing the two stages of TSLS estimation by hand, we do not make this adjustment

(ロト・ロト・ヨト・ヨト・ヨー つへで)

Stata's ivregress, in contrast, does

Roadmap

Introduction

Instrumental Variables Estimation

Asymptotic Distribution

The General IV Regression Model

Checking IV Relevance: Weak Instruments

Checking IV Exogeneity: Test of Overidentifying Restrictions

Example: Estimating the Demand for Cigarettes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Here is a more general version of the model we studied last week:

 $Y_i = \beta_0 + \beta_1 X_{1i} + \ldots + \beta_k X_{ki} + \beta_{k+1} W_{1i} + \ldots + \beta_{k+r} W_{ri} + u_i$

- Y_i is the dependent variable
- ► X_{1i},..., X_{ki} are endogenous regressors (correlated with u_i)
- ► W_{1i},..., W_{ri} are exogenous regressors (uncorrelated with u_i)
- $\beta_1, \ldots, \beta_{k+r}$ are the unknown regression coefficients
- Z_{1i},..., Z_{mi} are instrumental variables (the excluded exogenous variables)

We therefore have

- k endogenous explanatory variables
- *r* exogenous explanatory variables
- *m* instrumental variables

Reality check:

In practice you will mostly have $k \leq 2$ and $m \leq 5$

Depending on the relationship between k and m, we can or cannot estimate the model from the previous slide

ション・ 「「 ・ ヨ ・ ィヨ ・ ィロ・

New terminology:

The coefficients β_1, \ldots, β_k are said to be:

exactly identified if m = k
 There are just enough instruments
 can estimate all coefficients

overidentified if m > k
 There are more than enough instruments can estimate all coefficients

underidentified if m < k There are too few IV; cannot actimate any coefficients; no

cannot estimate any coefficients; need more IV

for example: k = 1 and m = 0

The five IV regression assumptions in the general model:

1.
$$\operatorname{E}[u_i|X_{ji}] \neq \operatorname{E}[u_i]$$
 for $j = 1, \dots, k$
 $\operatorname{E}[u_i|W_{1i}, \dots, W_{ri}] = \operatorname{E}[u_i]$

- 2. $(Y_i, X_{1i}, ..., X_{ki}, W_{1i}, ..., W_{ri}, Z_{1i}, ..., Z_{mi})$ are i.i.d.
- 3. The W_i , X_i , Y_i , Z_i all have nonzero, finite 4th moments

ション・ 「「 ・ ヨ ・ ィヨ ・ ィロ・

- 4. heteroskedasticity
- 5. (Z_{1i}, \ldots, Z_{mi}) are valid IV

How does two-stage estimation work in the general model?

Let's study a more tractable version of the general model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_{1i} + \ldots + \beta_{1+r} W_{ri} + u_i$$

- 1 endogenous explanatory variable
- r exogenous explanatory variables
- *m* instruments

(The model with *k* endogenous variables is just too tedious for the purpose of presenting it in a lecture!)

Is β_1 here underidentified, exactly identified or overidentified?

Instrument validity in that model means:

► Instrument relevance:

at least one of the Z_{1i}, \ldots, Z_{mi} has a non-zero coefficient in the equation

▲□▶▲@▶▲≧▶▲≧▶ 差 のへぐ

$$X_{i} = \pi_{0} + \pi_{1}Z_{1i} + \dots + \pi_{m}Z_{mi} + \pi_{m+1}W_{1i} + \dots + \pi_{m+r}W_{ri} + v_{i}$$

• Instrument exogeneity: $\rho_{Z_{1i}u_i} = \cdots = \rho_{Z_{mi}u_i} = 0$

Estimation of the more general model again follows two stages

1. Run OLS of X_i on a constant and all exogenous regressors

$$X_i = \pi_0 + \pi_1 Z_{1i} + \dots + \pi_m Z_{mi}$$

$$+\pi_{m+1}W_{1i}+\cdots+\pi_{m+r}W_{ri}+v_i$$

(don't forget to include the W's here!)

- Obtain OLS estimates $\hat{\pi}_0, \ldots, \hat{\pi}_{m+r}$
- Compute the predicted values of X_i : $\hat{X}_i = \hat{\pi}_0 + \hat{\pi}_1 Z_{1i} + \dots + \hat{\pi}_{m+r} W_{ri}$
- The predicted \hat{X}_i can be viewed as the exogenous part of X_i

2. Run OLS of Y_i on a constant, \hat{X}_i as well as W_{1i}, \ldots, W_{ri}

- Obtain OLS estimates and denote them by $\hat{\beta}_0^{TSLS}, \dots, \hat{\beta}_{1+r}^{TSLS}$
- These are the TSLS estimates
- This procedure is based on the following rewriting of the regression model:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}W_{1i} + \ldots + \beta_{1+r}W_{ri} + u_{i}$$

= $\beta_{0} + \beta_{1}\hat{X}_{i} + \beta_{2}W_{1i} + \ldots + \beta_{1+r}W_{ri} + (u_{i} + \beta_{1}(X_{i} - \hat{X}_{i}))$
=: $\beta_{0} + \beta_{1}\hat{X}_{i} + \beta_{2}W_{1i} + \ldots + \beta_{1+r}W_{ri} + w_{i}$

▲ロト ▲ 帰 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - つ Q (~

(Will prove soon why this is a good idea)

Roadmap

Introduction

Instrumental Variables Estimation

Asymptotic Distribution The General IV Regression Model Checking IV Relevance: Weak Instruments Checking IV Exogeneity: Test of Overidentifying Restrictions Example: Estimating the Demand for Cigarettes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We still focus on a model with one endogenous regressor:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_{1i} + \ldots + \beta_{1+r} W_{ri} + u_i$$

First stage regression:

$$X_i = \pi_0 + \pi_1 Z_{1i} + \ldots + \pi_m Z_{mi}$$

+ $\pi_{m+1} W_{1i} + \ldots + \pi_{m+r} W_{ri} + v_i$

- The instruments are relevant if at least one of π_1, \ldots, π_m are nonzero
- The instruments are said to be weak if all the π₁,..., π_m are either zero or nearly zero
- Weak instruments explain very little of the variation in X, beyond that explained by the W's

If instruments are weak, the sampling distribution of TSLS and its t-statistic are not normal, even with n large

Consider the simplest case:

 $Y_i = \beta_0 + \beta_1 X_i + u_i$ $X_i = \pi_0 + \pi_1 Z_i + u_i$

Recall that the IV estimator is $\hat{\beta}_1^{TSLS} = s_{ZY}/s_{ZX}$

- If π₁ is zero or small, then s_{ZX} will be small:
 With weak instruments, the denominator is nearly zero
- If so, the asymptotic distribution of $\hat{\beta}_1^{TSLS}$ is not normal
- standard errors, *t*-statistic, *p*-values and confidence intervals are all wrong

How can you know if your IV are weak? It can be tested!

Simply run the first stage regression $X_i = \pi_0 + \pi_1 Z_{1i} + \dots + \pi_m Z_{mi} + \pi_{m+1} W_{1i} + \dots + \pi_{m+r} W_{ri} + v_i$

and test statistical significance of π_1, \ldots, π_m

Simple *F*-test for π_1, \ldots, π_m

Small *F* is indicative of weak instruments, large *F* suggests that instruments are not weak

Rule of thumb: If the first stage F-statistic exceeds 10, then the set of instruments is not weak

If so, the TSLS estimator will be biased, and statistical inferences (standard errors, hypothesis tests, confidence intervals) can be misleading

Simply rejecting the joint null hypothesis that the π_1, \ldots, π_m are zero is not enough: need the π_1, \ldots, π_m to be sufficiently far away from zero to provide predictive content

Where exactly does the rule of thumb ("*F*-stat larger than 10") come from? A: Heavy econometric/mathematical machinery

What should you do if you have weak IV?

- Get better instruments (often easier said than done!)
- If you have many instruments, some are probably weaker than others and it's a good idea to drop the weaker ones (dropping an irrelevant instrument will increase the first-stage F)
- If you only have a few instruments, and all are weak, then you need to do some IV analysis other than TSLS
 - Limited Information Maximum Likelihood (LIML) estimation

- Moreira's (2003) conditional likelihood test
- Anderson-Rubin (1949) test

Roadmap

Introduction

Instrumental Variables Estimation

Asymptotic Distribution The General IV Regression Model Checking IV Relevance: Weak Instruments Checking IV Exogeneity: Test of Overidentifying Restrictions

ション・ 「「 ・ ヨ ・ ィヨ ・ ィロ・

Instrument exogeneity: All the instruments are uncorrelated with the error term $\rho_{Z_1u} = \cdots = \rho_{Z_mu} = 0$

If the instruments are correlated with the error term, the first stage of TSLS cannot isolate a component of X that is uncorrelated with the error term, so \hat{X} is correlated with u and TSLS is inconsistent

If there are more instruments than endogenous regressors, it is possible to test – partially – for instrument exogeneity

Consider the simplest case:

 $Y_i = \beta_0 + \beta_1 X_i + u_i$

- ► Suppose there are two valid instruments: *Z*_{1*i*}, *Z*_{2*i*}
- Then you could compute two separate TSLS estimates
- Intuitively, if these 2 TSLS estimates are very different from each other, then something must be wrong: one or the other (or both) of the instruments must be invalid
- The J-test of overidentifying restrictions makes this comparison in a statistically precise way
- ▶ This can only be done if *m* > *k* (overidentified)

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \ldots + \beta_{k}X_{ki} + \beta_{k+1}W_{1i} + \ldots + \beta_{k+r}W_{ri} + u_{i}$$

Conducting the "*J*-test":

- 1. First estimate the equation of interest using TSLS and all *m* instruments; compute the predicted values \hat{Y}_i according to $\hat{Y}_i := \hat{\beta}_0^{TSLS} + \hat{\beta}_1^{TSLS} X_{1i} + \ldots + \hat{\beta}_k^{TSLS} X_{ki} + \hat{\beta}_{k+1}^{TSLS} W_{1i} + \ldots + \hat{\beta}_{k+r}^{TSLS} W_{ri}$
- 2. Compute the residuals: $\hat{u}_i = Y_i \hat{Y}_i$, where
- 3. Regress \hat{u}_i on $Z_{1i}, \ldots, Z_{mi}, W_{1i}, \ldots, W_{ri}$
- 4. Compute the F-statistic testing the hypothesis that the coefficients on Z_{1i}, \ldots, Z_{mi} are all zero
- 5. Define the *J*-statistic is $J := m \cdot F$

Testing the J-statistic

- ▶ Null hypothesis *H*₀: all the instruments are exogenous
- ► Asymptotic distribution of the *J*-statistic under null: chi-squared distribution with *m* − *k* degrees of freedom
- The J-test is a one-sided test (rejection region on right)
- ► The 95% cut-off value depends on the degrees of freedom

т	k	df	95% cut-off
2	1	1	3.84
3	1	2	5.99
4	1	3	7.81
5	1	4	9.49

 If some instruments are exogenous and others are endogenous, the *J*-statistic will be large, leading to a rejection of *H*₀

• If
$$m = k$$
, then $J = 0$

Roadmap

Introduction

Instrumental Variables Estimation

Asymptotic Distribution The General IV Regression Model Checking IV Relevance: Weak Instruments Checking IV Exogeneity: Test of Overidentifying Restrictions

Example: Estimating the Demand for Cigarettes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: demand for cigarettes

We want to estimate price and income elasticity of cigarette demand

 $\ln(Q_i) = \beta_0 + \beta_1 \ln(P_i) + \beta_2 \ln(Income_i) + u_i$

Data: 48 states in the US, year 1995

- Q_i : Annual per capita cigarette sales (in packs) in state i
- ▶ *P_i*: real average retail cigarette price per pack in state *i*
- ► *Income_i*: real per capita income in state *i*
- ► Which one is/are the endogenous variable/s?
- Instruments:
 - Z_{1i} : general sales tax in state *i*
 - ► *Z*_{2*i*}: cigarette specific tax in state *i*
- ► Is β_1 over-, under-, or exactly identified?

First stage, testing for weak IV

regress lavgprice lpcincome cigtax salestax if year==1995, robust

Linear regression	Number of obs	=	48
	F(3, 44)	=	263.12
	Prob > F	=	0.0000
	R-squared	=	0.9403
	Root MSE	=	.03226

lavgprice		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lpcincome cigtax salestax		.1083446 .0093517 .0108898	.0396525 .0008698 .0021366	2.73 10.75 5.10	0.009 0.000 0.000	.0284302 .0075987 .0065838	.188259 .0111047 .0151958
_cons	Ì	4.103035	.0883802	46.42	0.000	3.924916	4.281153

testparm cigtax salestax

F-TEST OF IV

- (1) cigtax = 0
- (2) salestax = 0

F(2, 44) = 209.68Prob > F = 0.0000

EXCEEDS RULE OF THUMB

▲□▶▲□▶★□▶★□▶ □ ● のへで

Using Stata's "ivregress"

ivregress 2sls lpcpack lpcincome (lavgprice = cigtax salestax) if year==1995, robust

Instrumental	variables	(2SLS)	regression	Nur	ber o	of obs	=	48
				Wal	d ch	i2(2)	=	34.51
				Pro	b > (chi2	=	0.0000
				R-s	quar	ed	=	0.4294
				De	+ MC1	P	_	10100

	I		Robust				
lpcpack	I	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
	+-						
lavgprice	I	-1.277424	.2416838	-5.29	0.000	-1.751115	8037324
lpcincome	I	.2804045	.2458274	1.14	0.254	2014083	.7622174
_cons	I	9.894955	.9287578	10.65	0.000	8.074623	11.71529
Instrumented:		lavgprice					

Instruments: lpcincome cigtax salestax

Large price elasticity, insignificant income elasticity

Test of Overidentifying Restrictions, lazy way

Immediately after running "ivregress" execute:

```
estat overid
```

Test of overidentifying restrictions:

Score chi2(1) = .334736 (p = 0.5629)

J-statistic equals 0.33

From table (a few slides earlier), critical cut-off is 3.84 (because k = 1 and m = 2)

Cannot reject the null hypothesis that IV are exogenous

Test of Overidentifying Restrictions, clumsy way

predict uhat, residuals

regress uhat lpcincome cigtax salestax if year==1995, robust

Linear regression	Number of obs	=	48
	F(3, 44)	=	0.11
	Prob > F	=	0.9530
	R-squared	=	0.0069
	Root MSE	=	.18932

			Robust				
uhat	I	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	-+-						
lpcincome	L	.031566	.2333859	0.14	0.893	4387923	.5019243
cigtax		001507	.003303	-0.46	0.650	0081638	.0051498
salestax		.006332	.0121997	0.52	0.606	0182548	.0309188
_cons		0654967	.5900834	-0.11	0.912	-1.254732	1.123738

testparm cigtax salestax

F-TEST OF IV

イロト 不得 トイヨト イヨト ヨー ろくぐ

- (1) cigtax = 0
- (2) salestax = 0

F(2,	44) =	0.16	COMPUTE J-STAT BY MULTIPLYING
	Prob	> F =	0.8536	BY m=2 WHICH GIVES EXACTLY
				SAME RESULT AS PREVIOUS SLIDE

Problem Solving Exercises

 A sociologist studies if a mother's prenatal smoking causes her child to become more violent during adolesence. Using household survey data that collects information on mothers and their children, the sociologist runs the regression:

 $Fights_i = \beta_0 + \beta_1 Smoking_i + \beta_2 Age_i + u_i$, where

- Fights_i is the number of fights teenager i was involved in during the month before the survey interview
- Smoking_i is a dummy variable indicating if the mother of teenager *i* smoked during pregnancy
- Age_i is the age of teenager *i*

Does $\hat{\beta}_1$ estimate the causal effect of a mother's smoking during pregnancy on her child's violence later in life?