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Assignment 2

You can already start working on Assignment 2

After today’s lecture and tutorial you should be able to solve

most of the assignment already

Deadline: 17 October at 12:00pm (noon, mid-day)

Reminder: my deadlines are very sharp!

(If you submit at 12:01pm you will receive a mark of zero!)

No extensions given under any circumstances!

Note: I do not offer any help on solving the assignment!
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So far we looked at the dependent variable Yi as being

continuous

I longevity after heart attack

I gdp growth

I income

What if Yi is binary?

I Yi = get into college, or not

I Yi = person smokes, or not

I Yi = mortgage application is accepted, or not



Mortgage Denial and Race The Boston Fed HMDA Dataset

I Individual applications for single-family mortgages made

in 1990 in the greater Boston area

I 2380 observations, collected under Home Mortgage

Disclosure Act (HMDA)

Variables
I Dependent variable:

I Is the mortgage denied or accepted?

I Independent variables:
I income, wealth, employment status
I other loan, property characteristics
I race of applicant



A natural starting point is the linear regression model with a

single regressor:

Yi = β0 + β1Xi + ui

But:

I What does β1 mean when Y is binary? Is β1 = ∆Y
∆X ?

I What does the line β0 + β1X mean when Y is binary?

I What does the predicted value Ŷ mean when Y is binary?

For example, what does Ŷ = 0.26 mean?



In the linear probability model, β1 is the change in that

predicted probability for a unit change in Xi

Linear probability model: Yi = β0 + β1Xi + ui

E[Yi|Xi] = E[β0 + β1Xi + ui|Xi] = β0 + β1Xi,

under OLS Assumption 1, E[ui|Xi] = 0

At the same time, when Yi is binary,

E[Yi|Xi] = 1 · Pr(Y = 1|Xi) + 0 · Pr(Y = 0|Xi)

= Pr(Y = 1|Xi)

Connecting the dots:

Pr(Y = 1|X) = β0 + β1Xi



When Y is binary, the linear regression model:

Yi = β0 + β1Xi + ui

is called the linear probability model because

Pr(Yi = 1|Xi) = β0 + β1Xi

The probability is modeled to be linear

The coefficient β1 = change in probability that Yi = 1 for a unit

change in Xi:

β1 = Pr(Yi = 1|Xi = x + 1)− Pr(Yi = 1|Xi = x)



Example: Mortgage denial versus ratio of debt payments to

income (P/I ratio) in a subset of the HMDA data set (n = 127)



d̂eny = −0.080
(0.032)

+ 0.604
(0.098)

· P/Iratio (n = 2, 380)

Predicted probability of denial:

I for applicant with P/I ratio = .3:

P̂r(deny = 1|P/Iratio = .3) = −0.080 + 0.604 · 0.3 = 0.101

I for applicant with P/I ratio = .4:

P̂r(deny = 1|P/Iratio = .4) = −0.080 + 0.604 · 0.4 = 0.162

I for applicant with P/I ratio = .5:

P̂r(deny = 1|P/Iratio = .5) = −0.080 + 0.604 · 0.5 = 0.222

I for applicant with P/I ratio = .6:

P̂r(deny = 1|P/Iratio = .6) = −0.080 + 0.604 · 0.6 = 0.282

I for applicant with P/I ratio = .7:

P̂r(deny = 1|P/Iratio = .7) = −0.080 + 0.604 · 0.7 = 0.343



The effect on the probability of denial of an increase in P/I ratio

by 0.10 (successively) is to increase the probability by 0.0604,

that is, by 6.04 percentage points

That, of course, is exactly equal to one tenth of β̂1

Probability changes linearly



Next include black as a regressor:

d̂eny = −0.091
(0.032)

+ 0.559
(0.098)

P/Iratio + 0.177
(0.025)

black

Predicted probability of denial:

I for black applicant with P/I ratio = .3:

P̂r(deny = 1) = −0.091 + 0.559 · 0.3 + 0.177 · 1 = 0.254

I for white applicant, P/I ratio = .3:

P̂r(deny = 1) = −0.091 + 0.559 · 0.3 + 0.177 · 0 = 0.077

Difference = 0.177 = 17.7 percentage points

Coefficient on black is significant at the 5% level

Still plenty of room for omitted variable bias. . .



The linear probability model models Pr(Yi = 1|Xi) as a linear

function of Xi

I Advantages
I simple to estimate and to interpret
I inference is the same as for multiple regression

(use heteroskedasticity-robust standard errors)

I Disadvantages
I A LPM says that the change in the predicted probability for

a given change in Xi is the same for all values of Xi, but that
doesn’t always seem sensible

I Also, LPM predicted probabilities can be < 0 or > 1!

I These disadvantages can be solved by using a nonlinear
probability model: probit and logit regression
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The problem with the linear probability model is that it models

the probability of Y=1 as being linear:

Pr(Yi = 1|Xi) = β0 + β1Xi

Instead, we want:

1. Pr(Yi = 1|Xi) to be have different slopes as Xi changes

2. 0 ≤ Pr(Yi = 1|Xi) ≤ 1 for all Xi

This requires using a nonlinear functional form for the

probability

How about an “S-curve”. . .



The probit model satisfies these conditions:

1. Pr(Yi = 1|Xi) is now nonlinear in Xi for β1 > 0

2. 0 ≤ Pr(Yi = 1|Xi) ≤ 1 for all Xi



Probit regression models the probability that Yi = 1 using the

cumulative standard normal distribution function, Φ(z),
evaluated at z = β0 + β1X

The probit regression model is,

Pr(Yi = 1|Xi) = Φ(β0 + β1Xi)

where Φ is the cumulative normal distribution function and

z = β0 + β1Xi is the “z-value” or “z-index” of the probit model

Example: Suppose β0 = −2, β1 = 3, X = 0.4, so

Pr(Yi = 1|Xi = 0.4) = Φ(−2 + 3× 0.4) = Φ(−0.8)

STAT1008 refresher: Pr(Yi = 1|Xi = 0.4) = area under the

standard normal density to left of z = −0.8, which is . . .



Pr(z ≤ −0.8) = 0.2119

(The good old days when people still used standard normal

tables. . . )



Why use the cumulative normal probability distribution?
I The “S-shape” gives us what we want:

I Pr(Yi = 1|Xi) to be increasing in Xi for β1 > 0, and
I 0 ≤ Pr(Yi = 1|Xi) ≤ 1 for all Xi

I Easy to use:

the probabilities are computed rapidly by Stata
I Relatively straightforward interpretation:

I β0 + β1Xi = z-value
I β̂0 + β̂1Xi is the predicted z-value, given Xi
I β1 is the change in the z-value for a unit change in Xi



STATA Example: HMDA data

probit deny p_irat, robust

Iteration 0: log likelihood = -872.0853

Iteration 1: log likelihood = -835.6633

Iteration 2: log likelihood = -831.80534

Iteration 3: log likelihood = -831.79234

Probit estimates Number of obs = 2380

Wald chi2(1) = 40.68

Prob > chi2 = 0.0000

Log likelihood = -831.79234 Pseudo R2 = 0.0462

------------------------------------------------------------------------------

| Robust

deny | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

p_irat | 2.967908 .4653114 6.38 0.000 2.055914 3.879901

_cons | -2.194159 .1649721 -13.30 0.000 -2.517499 -1.87082

------------------------------------------------------------------------------

P̂r(deny = 1|P/I ratio) = Φ(−2.19
(0.16)

+ 2.97
(0.47)

· P/I ratio)



P̂r(deny = 1|P/I ratio) = Φ(−2.19
(0.16)

+ 2.97
(0.47)

· P/I ratio)

I Positive coefficient: does this make sense?

P̂r(deny = 1|P/I ratio = 0.3) = Φ(−2.19 + 2.97 · 0.3)

= Φ(−1.30) = .097

P̂r(deny = 1|P/I ratio = 0.4) = Φ(−2.19 + 2.97 · 0.4)

= Φ(−1.00) = 0.158

P̂r(deny = 1|P/I ratio = 0.5) = Φ(−2.19 + 2.97 · 0.5)

= Φ(−0.71) = 0.240

P̂r(deny = 1|P/I ratio = 0.6) = Φ(−2.19 + 2.97 · 0.6)

= Φ(−0.41) = 0.342

P̂r(deny = 1|P/I ratio = 0.7) = Φ(−2.19 + 2.97 · 0.7)

= Φ(−0.11) = 0.456

I Predicted probability changes nonlinearly



Comparison of LPM and probit predicted probabilities

P/I ratio LPM Probit

0 -8.0% 1.4%

0.1 -2.0% 2.9%

0.2 4.1% 5.5%

0.3 10.1% 9.7%

0.4 16.2% 15.5%

0.5 22.2% 24.0%

0.6 28.2% 34.2%

0.7 34.3% 45.6%

0.8 40.3% 57.4%

0.9 46.4% 68.5%

1 52.4% 78.2%

Probit has marginal probabilities that are increasing at an

increasing rate at first, then at decreasing rate



Adding explanatory variables is straightforward

Pr(Yi = 1|X1i, X2i) = Φ(β0 + β1X1i + β2X2i)

I Φ is still the cumulative normal distribution function

I z = β0 + β1X1i + β2X2i is the “z-value” or “z-index” of the

profit model

I β1 is the effect on the z-score of a unit change in X1i,

holding constant X2i



STATA Example, ctd.: Predicted probit probabilities

probit deny p_irat black, robust

Probit estimates Number of obs = 2380

Wald chi2(2) = 118.18

Prob > chi2 = 0.0000

Log likelihood = -797.13604 Pseudo R2 = 0.0859

------------------------------------------------------------------------------

| Robust

deny | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

p_irat | 2.741637 .4441633 6.17 0.000 1.871092 3.612181

black | .7081579 .0831877 8.51 0.000 .545113 .8712028

_cons | -2.258738 .1588168 -14.22 0.000 -2.570013 -1.947463

------------------------------------------------------------------------------

Now we are computing predicted probability

scalar z1 = _b[_cons]+_b[p_irat]*.3+_b[black]*0;

display "Pred prob, p_irat=.3, white: " normprob(z1);

Pred prob, p_irat=.3, white: .07546603

‘b[_cons]’ is the estimated intercept (-2.258738)

‘b[p_irat]’ is the coefficient on p_irat (2.741637)

‘scalar’ creates a new scalar which is the result of a calculation

‘display’ prints the indicated information to the screen



P̂r(deny = 1|P/I, black) =

Φ(−2.26
(0.16)

+ 2.74
(0.44)

× P/I ratio + 0.71
(0.08)

× black)

I Is the coefficient on black statistically significant?

I Estimated effect of race for P/I ratio = 0.3:

P̂r(deny = 1|0.3, 1) = Φ(−2.26 + 2.74 · 0.3 + 0.71 · 1) = 0.233

P̂r(deny = 1|0.3, 0) = Φ(−2.26 + 2.74 · 0.3 + 0.71 · 0) = 0.075

I Difference in rejection probabilities = 0.158

(15.8 percentage points)

I Still plenty of room for omitted variable bias!



Easier way to calculate predicted probabilities in Stata

margins, at(pi_rat=0.3 black=(0 1))

Adjusted predictions Number of obs = 2380

Model VCE : OIM

Expression : Pr(deny), predict()

1._at : pi_rat = .3

black = 0

2._at : pi_rat = .3

black = 1

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_at |

1 | .075466 .0060601 12.45 0.000 .0635884 .0873436

2 | .2332795 .0233158 10.01 0.000 .1875815 .2789776

------------------------------------------------------------------------------
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Logit regression models the probability of Yi = 1, given Xi, as the

cumulative standard logistic distribution function, evaluated at

z = β0 + β1Xi:

Pr(Yi = 1|Xi) = F(β0 + β1Xi)

where F is the cumulative logistic distribution function:

F(z) =
1

1 + e−z

Because logit and probit use different probability functions, the

coefficients (β’s) are different in logit and probit



Pr(Yi = 1|Xi) = F(β0 + β1Xi)

where F(β0 + β1Xi) =
1

1+e−(β0+β1Xi)

Example: β0 = −2, β1 = 3, X = 0.4, as before

β0 + β1X = −2 + 3× 0.4 = −0.8

Pr(Y = 1|X = 0.4) =
1

1 + e−(−0.8)
= 0.31

Compare that to 0.21 for Φ

Illustrates: logit has fatter tails

(but in the center they are quite similar)



Why bother with logit if we have probit?

I The main reason is historical: logit is computationally

faster & easier, but that doesn’t matter nowadays

I In practice, logit and probit are very similar - since

empirical results typically don’t hinge on the logit/probit

choice, both tend to be used in practice



STATA Example: HMDA data

logit deny p_irat black, robust

Iteration 0: log likelihood = -872.0853

Iteration 1: log likelihood = -806.3571

Iteration 2: log likelihood = -795.74477

Iteration 3: log likelihood = -795.69521

Iteration 4: log likelihood = -795.69521

Logit estimates Number of obs = 2380

Wald chi2(2) = 117.75

Prob > chi2 = 0.0000

Log likelihood = -795.69521 Pseudo R2 = 0.0876

------------------------------------------------------------------------------

| Robust

deny | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

p_irat | 5.370362 .9633435 5.57 0.000 3.482244 7.258481

black | 1.272782 .1460986 8.71 0.000 .9864339 1.55913

_cons | -4.125558 .345825 -11.93 0.000 -4.803362 -3.447753

------------------------------------------------------------------------------



Predicted probabilities in Stata

margins, at(pi_rat=0.3 black=(0 1))

Adjusted predictions Number of obs = 2380

Model VCE : OIM

Expression : Pr(deny), predict()

1._at : pi_rat = .3

black = 0

2._at : pi_rat = .3

black = 1

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_at |

1 | .0748514 .0063373 11.81 0.000 .0624305 .0872724

2 | .2241459 .0239438 9.36 0.000 .1772169 .2710749

------------------------------------------------------------------------------



The predicted probabilities from the probit and logit models

are very close in these HMDA regressions:
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