Econometrics II: Econometric Modelling

Jürgen Meinecke

Research School of Economics, Australian National University

5 October, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Assignment 2

You can already start working on Assignment 2

After today's lecture and tutorial you should be able to solve most of the assignment already

Deadline: 17 October at 12:00pm (noon, mid-day)

Reminder: my deadlines are *very* sharp! (If you submit at 12:01pm you will receive a mark of zero!)

No extensions given under any circumstances!

Note: I do not offer any help on solving the assignment!

Introduction

Models with Binary Dependent Variable Linear Probability Model: OLS Nonlinear Probability Models: Probit Mode Nonlinear Probability Models: Logit Model

・ロト・西・・田・・田・・日・ ひゃぐ

So far we looked at the dependent variable Y_i as being continuous

- longevity after heart attack
- gdp growth
- ► income

What if Y_i is binary?

- Y_i = get into college, or not
- Y_i = person smokes, or not
- Y_i = mortgage application is accepted, or not

Mortgage Denial and Race The Boston Fed HMDA Dataset

 Individual applications for single-family mortgages made in 1990 in the greater Boston area

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- 2380 observations, collected under Home Mortgage Disclosure Act (HMDA)
- Variables
 - Dependent variable:
 - Is the mortgage denied or accepted?
 - Independent variables:
 - income, wealth, employment status
 - other loan, property characteristics
 - race of applicant

A natural starting point is the linear regression model with a single regressor:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

But:

- What does β_1 mean when Y is binary? Is $\beta_1 = \frac{\Delta Y}{\Delta X}$?
- What does the line $\beta_0 + \beta_1 X$ mean when Y is binary?
- What does the predicted value \hat{Y} mean when Y is binary? For example, what does $\hat{Y} = 0.26$ mean?

ション (日本) (日本) (日本) (日本) (日本)

In the linear probability model, β_1 is the change in that predicted probability for a unit change in X_i

Linear probability model: $Y_i = \beta_0 + \beta_1 X_i + u_i$

$$\mathbf{E}[Y_i|X_i] = \mathbf{E}[\beta_0 + \beta_1 X_i + u_i|X_i] = \beta_0 + \beta_1 X_i,$$

under OLS Assumption 1, $E[u_i|X_i] = 0$

At the same time, when
$$Y_i$$
 is binary,

$$E[Y_i|X_i] = 1 \cdot Pr(Y = 1|X_i) + 0 \cdot Pr(Y = 0|X_i)$$

$$= Pr(Y = 1|X_i)$$

▲ロト ▲ 理 ト ▲ 国 ト ▲ 国 ト ク Q (~)

Connecting the dots:

$$\Pr(Y=1|X) = \beta_0 + \beta_1 X_i$$

When Y is binary, the linear regression model: $Y_i = \beta_0 + \beta_1 X_i + u_i$

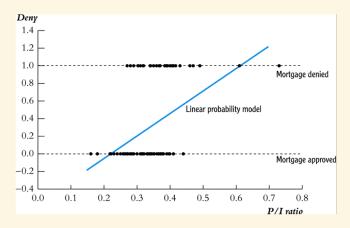
is called the *linear probability model* because $Pr(Y_i = 1|X_i) = \beta_0 + \beta_1 X_i$

The probability is modeled to be linear

The coefficient β_1 = change in probability that $Y_i = 1$ for a unit change in X_i :

$$\beta_1 = \Pr(Y_i = 1 | X_i = x + 1) - \Pr(Y_i = 1 | X_i = x)$$

Example: Mortgage denial versus ratio of debt payments to income (P/I ratio) in a subset of the HMDA data set (n = 127)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\widehat{deny} = -0.080 + 0.604 \cdot P / Iratio \quad (n = 2,380)$$

Predicted probability of denial:

- ► for applicant with P/I ratio = .3: $\widehat{\Pr}(deny = 1 | P / Iratio = .3) = -0.080 + 0.604 \cdot 0.3 = 0.101$
- for applicant with P/I ratio = .4: $\widehat{\Pr}(deny = 1 | P / Iratio = .4) = -0.080 + 0.604 \cdot 0.4 = 0.162$
- for applicant with P/I ratio = .5: $\widehat{\Pr}(deny = 1 | P / Iratio = .5) = -0.080 + 0.604 \cdot 0.5 = 0.222$
- ► for applicant with P/I ratio = .6: $\widehat{\Pr}(deny = 1 | P / Iratio = .6) = -0.080 + 0.604 \cdot 0.6 = 0.282$
- for applicant with P/I ratio = .7: $\widehat{\Pr}(deny = 1 | P/Iratio = .7) = -0.080 + 0.604 \cdot 0.7 = 0.343$

The effect on the probability of denial of an increase in P/I ratio by 0.10 (successively) is to increase the probability by 0.0604, that is, by 6.04 percentage points

ション・ 「「 ・ ヨ ・ ィヨ ・ ィロ・

That, of course, is exactly equal to one tenth of $\hat{\beta}_1$

Probability changes linearly

Next include *black* as a regressor: $\widehat{deny} = -0.091 + \underbrace{0.559P/Iratio}_{(0.098)} + \underbrace{0.177black}_{(0.025)}$

Predicted probability of denial:

- ► for black applicant with P/I ratio = .3: $\widehat{\Pr}(deny = 1) = -0.091 + 0.559 \cdot 0.3 + 0.177 \cdot 1 = 0.254$
- for white applicant, P/I ratio = .3: $\widehat{\Pr}(deny = 1) = -0.091 + 0.559 \cdot 0.3 + 0.177 \cdot 0 = 0.077$

Difference = 0.177 = 17.7 percentage points

Coefficient on black is significant at the 5% level

Still plenty of room for omitted variable bias...

The linear probability model models $Pr(Y_i = 1 | X_i)$ as a linear function of X_i

- Advantages
 - simple to estimate and to interpret
 - inference is the same as for multiple regression (use heteroskedasticity-robust standard errors)
- Disadvantages
 - A LPM says that the change in the predicted probability for a given change in X_i is the same for all values of X_i, but that doesn't always seem sensible
 - ► Also, LPM predicted probabilities can be < 0 or > 1!
- These disadvantages can be solved by using a *nonlinear* probability model: probit and logit regression

Introduction

Models with Binary Dependent Variable Linear Probability Model: OLS Nonlinear Probability Models: Probit Model Nonlinear Probability Models: Logit Model

ション (日本) (日本) (日本) (日本) (日本)

The problem with the linear probability model is that it models the probability of Y=1 as being linear:

 $\Pr(Y_i = 1 | X_i) = \beta_0 + \beta_1 X_i$

Instead, we want:

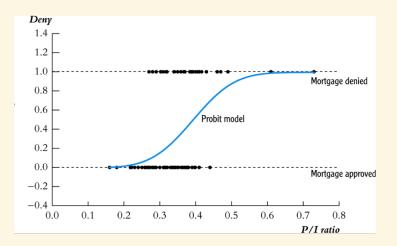
1. $Pr(Y_i = 1 | X_i)$ to be have different slopes as X_i changes

(日) (日) (日) (日) (日) (日) (日) (日)

2. $0 \le \Pr(Y_i = 1 | X_i) \le 1$ for all X_i

This requires using a *nonlinear* functional form for the probability

How about an "S-curve"...



The probit model satisfies these conditions:

1. $Pr(Y_i = 1 | X_i)$ is now nonlinear in X_i for $\beta_1 > 0$

2.
$$0 \le \Pr(Y_i = 1 | X_i) \le 1$$
 for all X_i

Probit regression models the probability that $Y_i = 1$ using the cumulative standard normal distribution function, $\Phi(z)$, evaluated at $z = \beta_0 + \beta_1 X$

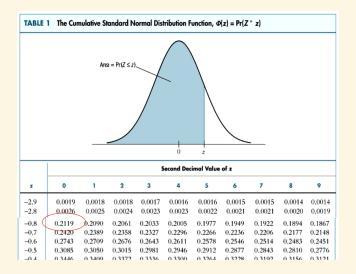
The probit regression model is,

$$\Pr(Y_i = 1 | X_i) = \Phi(\beta_0 + \beta_1 X_i)$$

where Φ is the cumulative normal distribution function and $z = \beta_0 + \beta_1 X_i$ is the "z-value" or "z-index" of the probit model

Example: Suppose $\beta_0 = -2$, $\beta_1 = 3$, X = 0.4, so $\Pr(Y_i = 1 | X_i = 0.4) = \Phi(-2 + 3 \times 0.4) = \Phi(-0.8)$

STAT1008 refresher: $Pr(Y_i = 1 | X_i = 0.4) = area under the standard normal density to left of <math>z = -0.8$, which is ...



 $\Pr(z \le -0.8) = 0.2119$

(The good old days when people still used standard normal tables...)

Why use the cumulative normal probability distribution?

► The "S-shape" gives us what we want:

• $Pr(Y_i = 1 | X_i)$ to be increasing in X_i for $\beta_1 > 0$, and

•
$$0 \leq \Pr(Y_i = 1 | X_i) \leq 1$$
 for all X_i

Easy to use:

the probabilities are computed rapidly by Stata

Relatively straightforward interpretation:

- $\hat{\beta}_0 + \hat{\beta}_1 X_i$ is the predicted z-value, given X_i
- \triangleright *β*¹ is the change in the z-value for a unit change in *X*^{*i*}

ション・ 「「 ・ ヨ ・ ィヨ ・ ィロ・

STATA Example: HMDA data

probit deny p_irat, robust Iteration 0: log likelihood = -872.0853 Iteration 1: log likelihood = -835.6633 Iteration 2: log likelihood = -831.80534 Iteration 3: log likelihood = -831.79234 Probit estimates Number of obs = 2380 Wald chi2(1) = 40.68 Prob > chi2 = 0.0000 Log likelihood = -831.79234 Pseudo R2 = 0.0462 Robust deny | Coef. Std. Err. z P>|z| [95% Conf. Interval] p_irat | 2.967908 .4653114 6.38 0.000 2.055914 3.879901 _cons | -2.194159 .1649721 -13.30 0.000 -2.517499 -1.87082

 $\widehat{\Pr}(deny = 1 | P/I \ ratio) = \Phi(-2.19 + 2.97 \cdot P/I \ ratio)$

$$\Pr(deny = 1 | P/I \ ratio) = \Phi(-2.19 + 2.97 \cdot P/I \ ratio)$$

Positive coefficient: does this make sense? $\Pr(deny = 1 | P/I \ ratio = 0.3) = \Phi(-2.19 + 2.97 \cdot 0.3)$ $= \Phi(-1.30) = .097$ $\hat{\Pr}(deny = 1 | P/I \ ratio = 0.4) = \Phi(-2.19 + 2.97 \cdot 0.4)$ $= \Phi(-1.00) = 0.158$ $\hat{\Pr}(deny = 1 | P/I \ ratio = 0.5) = \Phi(-2.19 + 2.97 \cdot 0.5)$ $= \Phi(-0.71) = 0.240$ $\hat{\Pr}(deny = 1 | P/I \ ratio = 0.6) = \Phi(-2.19 + 2.97 \cdot 0.6)$ $= \Phi(-0.41) = 0.342$ $\widehat{\Pr}(deny = 1 | P/I \ ratio = 0.7) = \Phi(-2.19 + 2.97 \cdot 0.7)$ $= \Phi(-0.11) = 0.456$

・ロト・日本・モト・モー うへの

Comparison of LPM and probit predicted probabilities

P/I ratio	LPM	Probit
0	-8.0%	1.4%
0.1	-2.0%	2.9%
0.2	4.1%	5.5%
0.3	10.1%	9.7%
0.4	16.2%	15.5%
0.5	22.2%	24.0%
0.6	28.2%	34.2%
0.7	34.3%	45.6%
0.8	40.3%	57.4%
0.9	46.4%	68.5%
1	52.4%	78.2%

Probit has marginal probabilities that are increasing at an increasing rate at first, then at decreasing rate

Adding explanatory variables is straightforward

$$\Pr(Y_i = 1 | X_{1i}, X_{2i}) = \Phi(\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i})$$

- Φ is still the cumulative normal distribution function
- ► $z = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$ is the "z-value" or "z-index" of the profit model

 β₁ is the effect on the z-score of a unit change in X_{1i}, holding constant X_{2i}

STATA Example, ctd.: Predicted probit probabilities

probit deny p_irat black, robust

Probit estimate	s			Number	of obs	=	2380
				Wald o	:hi2(2)	=	118.18
				Prob >	⊳ chi2	=	0.0000
Log likelihood	= -797.13604	Ł		Pseudo	R2	=	0.0859
1		Robust					
deny	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
+-							
p_irat	2.741637	.4441633	6.17	0.000	1.871	092	3.612181
black	.7081579	.0831877	8.51	0.000	.545	113	.8712028
_cons	-2.258738	.1588168	-14.22	0.000	-2.570	013	-1.947463

Now we are computing predicted probability
scalar z1 = _b[_cons]+_b[p_irat]*.3+_b[black]*0;
display "Pred prob, p_irat=.3, white: " normprob(z1);
Pred prob, p_irat=.3, white: .07546603

'b[_cons]' is the estimated intercept (-2.258738)
'b[p_irat]' is the coefficient on p_irat (2.741637)
'scalar' creates a new scalar which is the result of a calculation
'display' prints the indicated information to the screen

$$\widehat{\Pr}(deny = 1 | P/I, black) = \Phi(-2.26 + 2.74 \times P/I ratio + 0.71 \times black)$$

$$\Phi(-2.26 + 2.74 \times P/I ratio + 0.71 \times black)$$

- Is the coefficient on black statistically significant?
- Estimated effect of race for P/I ratio = 0.3:

 $\widehat{Pr}(deny = 1|0.3, 1) = \Phi(-2.26 + 2.74 \cdot 0.3 + 0.71 \cdot 1) = 0.233$ $\widehat{Pr}(deny = 1|0.3, 0) = \Phi(-2.26 + 2.74 \cdot 0.3 + 0.71 \cdot 0) = 0.075$

- Difference in rejection probabilities = 0.158 (15.8 percentage points)
- Still plenty of room for omitted variable bias!

Easier way to calculate predicted probabilities in Stata

```
margins, at(pi_rat=0.3 black=(0 1))
```

Adjusted pre Model VCE					Number	of	obs =	2380	
Expression	:	Pr(deny), predict()							
1at	:	pi_rat black	=	.3 0					
2at	:	pi_rat black	=	.3 1					
			Delta-method Std. Err.						
2	T T	.2332795	.0060601	12.45 10.01	0.000		0635884 1875815	.0873436 .2789776	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction

Models with Binary Dependent Variable

Linear Probability Model: OLS Nonlinear Probability Models: Probit Mode Nonlinear Probability Models: Logit Model

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへ⊙

Logit regression models the probability of $Y_i = 1$, given X_i , as the cumulative standard logistic distribution function, evaluated at

$$z = \beta_0 + \beta_1 X_i:$$

Pr(Y_i = 1|X_i) = F(\beta_0 + \beta_1 X_i)

where *F* is the cumulative logistic distribution function: $F(z) = \frac{1}{1 + e^{-z}}$

Because logit and probit use different probability functions, the coefficients (β 's) are different in logit and probit

- ロト・4日・4日・4日・4日・4日・

$$\Pr(Y_i = 1 | X_i) = F(\beta_0 + \beta_1 X_i)$$

where
$$F(\beta_0 + \beta_1 X_i) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_i)}}$$

Example: $\beta_0 = -2$, $\beta_1 = 3$, X = 0.4, as before $\beta_0 + \beta_1 X = -2 + 3 \times 0.4 = -0.8$ $\Pr(Y = 1 | X = 0.4) = \frac{1}{1 + e^{-(-0.8)}} = 0.31$

Compare that to 0.21 for Φ

Illustrates: logit has fatter tails (but in the center they are quite similar)

Why bother with logit if we have probit?

- The main reason is historical: logit is computationally faster & easier, but that doesn't matter nowadays
- In practice, logit and probit are very similar since empirical results typically don't hinge on the logit/probit choice, both tend to be used in practice

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

STATA Example: HMDA data

logit deny p_irat black, robust

Iteration 0:	log likeliho	-872.	0853				
Iteration 1:	log likeliho	-806.	3571				
Iteration 2:	log likeliho	pod = -795.7	4477				
Iteration 3:	log likeliho	ood = -795.6	9521				
Iteration 4:	log likeliho	ood = -795.6	9521				
Logit estimate	s			Numbe	r of obs	=	2380
				Wald	chi2(2)	=	117.75
				Prob	> chi2	=	0.0000
Log likelihood	= -795.69521	L		Pseud	o R2	=	0.0876
1		Robust					
deny	Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]
+							
p_irat	5.370362	.9633435	5.57	0.000	3.4822	14	7.258481
black	1.272782	.1460986	8.71	0.000	.98643	39	1.55913
_cons	-4.125558	.345825	-11.93	0.000	-4.80330	62	-3.447753

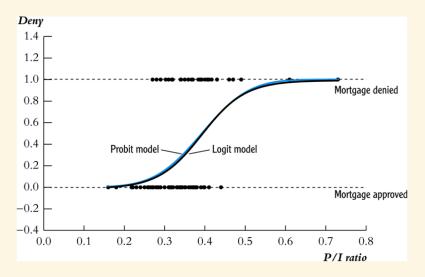
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Predicted probabilities in Stata

```
margins, at(pi_rat=0.3 black=(0 1))
Adjusted predictions
                                         Number of obs =
Model VCE
          : OIM
Expression : Pr(deny), predict()
                                  .3
1._at
         : pi_rat
                         =
            black
                         =
2._at
         : pi_rat
                                  .3
                         =
            black
                         =
                     Delta-method
               Margin Std. Err. z P>|z| [95% Conf. Interval]
____
       at I
        1 0.0748514 .0063373 11.81 0.000 .0624305 .0872724
        2 1
             2241459
                      .0239438 9.36 0.000
                                                1772169
                                                          2710749
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The predicted probabilities from the probit and logit models are very close in these HMDA regressions:



▲□▶▲舂▶★≧▶★≧▶ 差 のへで