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We have discussed two types of linear models:

linear projection: 𝑌𝑖 = 𝑋′
𝑖𝛽∗ + 𝑢𝑖 E(𝑢𝑖𝑋𝑖) = 0

linear regression: 𝑌𝑖 = 𝑋′
𝑖𝛽 + 𝑒𝑖 E(𝑒𝑖|𝑋𝑖) = 0

If we are only interested in 𝛽∗, then OLS is best

The linear regression model can also be estimated via OLS
because E(𝑒𝑖|𝑋𝑖) = 0 implies E(𝑒𝑖𝑋𝑖) = 0

But it is more restrictive: it says that the E(𝑌𝑖|𝑋𝑖) is linear

It defines a structural model that is very simplistic:
it basically states that the projection is the structural relation of
interest
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In practice, we are often dealing with this model instead:
𝑌𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖 E(𝑒𝑖𝑋𝑖) ≠ 0

It is often called structural model to emphasize that 𝛽 is the
coefficient of interest

Correspondingly, 𝛽 is called structural parameter

I find this terminology unfortunate, because there is nothing
inherently structural about these “models”

They are simple regression equations with the complication that 𝛽
should not be estimated via OLS
(because E(𝑒𝑖𝑋𝑖) ≠ 0, and so 𝛽 isn’t the projection coefficient)

When E(𝑒𝑖𝑋𝑖) ≠ 0 we say that 𝑋𝑖 is endogenous

Clearly, E(𝑒𝑖|𝑋𝑖) ≠ 0
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The three textbook examples of endogeneity are

• measurement error
• simultaneity, simultaneous equations, and
• omitted variable bias

Let’s have a look
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Measurement Error

Let’s say the “true” model is
𝑌𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖, E(𝑒𝑖|𝑋𝑖) = 0

If you had data on (𝑋𝑖, 𝑌𝑖) then OLS would be best

But let’s say you only observe (𝑋̃𝑖, 𝑌𝑖) with 𝑋̃𝑖 = 𝑋𝑖 + 𝑟𝑖 where 𝑟𝑖 is a
measurement error statistically independent of 𝑒𝑖 and 𝑋𝑖

Despite its randomness, this error causes serious problems:
𝑌𝑖 = 𝑋̃′

𝑖𝛽 + 𝑣𝑖, where 𝑣𝑖 ∶= 𝑒𝑖 − 𝑟′
𝑖𝛽

Can you safely use OLS here? Assuming E𝑟𝑖 = 0,
E(𝑋̃𝑖𝑣𝑖) = E ((𝑋𝑖 + 𝑟𝑖)(𝑒𝑖 − 𝑟′

𝑖𝛽)) = −E(𝑟𝑖𝑟′
𝑖)𝛽 ≠ 0

No you cannot! (unless 𝛽 = 0 or E(𝑟𝑖𝑟′
𝑖) = 0)
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Simultaneity, Simultaneous Equations

Consider the following two equation model
𝑌𝑖1 = 𝑋′

𝑖1𝛽1 + 𝜃1𝑌𝑖2 + 𝑒𝑖1

𝑌𝑖2 = 𝑋′
𝑖2𝛽2 + 𝜃2𝑌𝑖1 + 𝑒𝑖2

Let 𝑋𝑖1 and 𝑋𝑖2 be well behaved in the sense:
E(𝑒𝑖1𝑋𝑖1) = E(𝑒𝑖1𝑋𝑖2) = E(𝑒𝑖2𝑋𝑖1) = E(𝑒𝑖2𝑋𝑖2) = 0

Further assume E(𝑒𝑖1𝑒𝑖2) = 0 to keep things simple

Using 𝑌𝑖1 and 𝑌𝑖2 as regressors is problematic:
E(𝑒𝑖1𝑌𝑖2) = E (𝑒𝑖1(𝑋′

𝑖2𝛽2 + 𝜃2𝑌𝑖1 + 𝑒𝑖2)) = 𝜃2E(𝑒𝑖1𝑌𝑖1)
= 𝜃2E (𝑒𝑖1(𝑋′

𝑖1𝛽1 + 𝜃1𝑌𝑖2 + 𝑒𝑖1))
= 𝜃1𝜃2E (𝑒𝑖1𝑌𝑖2) + 𝜎2

1

=
𝜃2

1 − 𝜃1𝜃2
𝜎2

1 ≠ 0

where 𝜎2
1 ∶= Var (𝑒𝑖1)

7 / 58



Therefore, in the two equation model
𝑌𝑖1 = 𝑋′

𝑖1𝛽1 + 𝜃1𝑌𝑖2 + 𝑒𝑖1

𝑌𝑖2 = 𝑋′
𝑖2𝛽2 + 𝜃2𝑌𝑖1 + 𝑒𝑖2

the errors are not uncorrelated with all regressors

E(𝑒𝑖1𝑌𝑖2) =
𝜃2

1 − 𝜃1𝜃2
𝜎2

1 E(𝑒𝑖2𝑌𝑖1) =
𝜃1

1 − 𝜃1𝜃2
𝜎2

2

If 𝜃2 = 0, then the first equation doesn’t have an endogeneity
problem and OLS is fine (similarly 𝜃1 = 0 for second equation)
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Omitted Variables Bias

A simple model illustrates the main idea
𝑌𝑖 = 𝑋𝑖1𝛽1 + 𝑋𝑖2𝛽2 + 𝑢𝑖

where E(𝑢𝑖|𝑋𝑖1) = 0, E(𝑋𝑖2|𝑋𝑖1) ≠ 0 and you don’t observe 𝑋𝑖2

You have to omit 𝑋𝑖2 from the regression

Effectively you are facing the model
𝑌𝑖 = 𝑋𝑖1𝛽1 + 𝑒𝑖 𝑒𝑖 ∶= 𝑋𝑖2𝛽2 + 𝑢𝑖

where E(𝑒𝑖|𝑋𝑖1) ≠ 0

Is this a problem?

Only if E(𝑒𝑖𝑋𝑖1) ≠ 0 which may well be the case
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Let’s say you have got three scalar rvs 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 and you have the
model

𝑌𝑖 = 𝑋𝑖𝛽 + 𝑒𝑖 (structural equation)
𝑋𝑖 = 𝑍𝑖𝜋 + 𝑣𝑖, E(𝑣𝑖𝑍𝑖) = 0 (first stage regression)

Notice: first stage is simply a projection

Your research interest is 𝛽

Should you use OLS to estimate it? Yes if

• E(𝑒𝑖|𝑋𝑖) = 0
(then you don’t really need 𝑍𝑖 at all)

• E(𝑒𝑖|𝑋𝑖) ≠ 0 but E(𝑒𝑖𝑋𝑖) = 0
(case of omitted variable non-bias)

In short: you need E(𝑒𝑖𝑋𝑖) = 0 for OLS to make sense
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What if E(𝑒𝑖𝑋𝑖) ≠ 0

Then the existence of 𝑍𝑖 will be helpful as long as E(𝑒𝑖𝑍𝑖) = 0

Notice that E(𝑒𝑖𝑍𝑖) = 0 implies that E(𝑒𝑖𝑣𝑖) ≠ 0, that is,
the error terms of both equations must be correlated

How does 𝑍𝑖 help?

Combine the two equations to get
𝑌𝑖 = 𝑍𝑖𝜋𝛽 + (𝑒𝑖 + 𝑣𝑖𝛽)

= 𝑍𝑖𝜋𝛽 + 𝑤𝑖,

where E(𝑤𝑖𝑍𝑖) = 0

Therefore you can consistently estimate 𝜋𝛽

Of course you can also consistently estimate 𝜋

Simple idea: divide the estimator of 𝜋𝛽 by the estimator of 𝜋

It follows that you can back out a consistent estimator of 𝛽
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Alternative motivation: estimate 𝛽 in two stages

(i) Estimate 𝜋 via OLS in the first stage regression,
create 𝑋̂𝑖 = 𝜋̂𝑍𝑖

(ii) Regress 𝑌 on 𝑋̂𝑖 using OLS

The estimator from stage (ii) is numerically identical to the one from
the procedure explained on the preceding slide

Why should this make sense?
Why can you use 𝑋̂𝑖 but not 𝑋𝑖 in the structural equation?

Intuition: writing 𝑋𝑖 = 𝑋̂𝑖 + ̂𝑣𝑖 we see that

• 𝑋̂𝑖 captures the variation of 𝑋𝑖 that is exogenous
• ̂𝑣𝑖 captures the variation of 𝑋𝑖 that is endogenous
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This little example provides a lot of the main ideas about IV
estimation already

Unfortunately, however, things get considerably more intricate and
complicated once the setup is generalized

It is very important to discuss this extensively in the lecture

IV and 2SLS estimation are pervasive in economics

I’m not sure you can publish a paper only based on OLS

People always cry “endogeneity!” and ask for an instrument

Let’s properly understand the pros and cons, and provide best
practices
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Starting point is the following partition of the linear model
𝑌𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖

= 𝑋′
𝑖1𝛽1 + 𝑋′

𝑖2𝛽2 + 𝑒𝑖

where dim 𝛽1 = dim 𝑋𝑖1 = 𝐾1 × 1
dim 𝛽2 = dim 𝑋𝑖2 = 𝐾2 × 1 with 𝐾1 + 𝐾2 = 𝐾

The two types of regressors are characterized by
E(𝑒𝑖𝑋𝑖1) = 0 (exogenous regressors)
E(𝑒𝑖𝑋𝑖2) ≠ 0 (endogenous regressors)

This immediately tells you that 𝛽 ≠ 𝛽∗

Should we use OLS to estimate 𝛽?
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No, we shouldn’t use OLS to estimate 𝛽
̂𝛽OLS will consistently estimate 𝛽∗, but 𝛽 ≠ 𝛽∗

We need something new

Enter the instrumental variable:

Definition (Instrumental Variable (IV))
A 𝐿 × 1 vector 𝑍𝑖 is called an instrumental variable (IV) if

(i) E(𝑍𝑖𝑒𝑖) = 0 instrument exogeneity
(ii) rank E(𝑍𝑖𝑋′

𝑖) = 𝐾 instrument relevance

Notice that 𝑋𝑖1 does satisfy (i) and will always be included in 𝑍𝑖

Intuition for (ii): nonzero correlation between 𝑋𝑖 and 𝑍𝑖

A necessary condition for (ii) is 𝐿 ≥ 𝐾
(at least as many equations as unknowns)
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Think of 𝑍𝑖 as partitioned like so:

𝑍𝑖 ∶= ⎛⎜
⎝

𝑍𝑖1
𝑍𝑖2

⎞⎟
⎠

= ⎛⎜
⎝

𝑋𝑖1
𝑍𝑖2

⎞⎟
⎠

Let dim 𝑍𝑖2 = 𝐿2; it is clear that dim 𝑍𝑖1 = 𝐾1

In other words, the first component of 𝑍𝑖 is always 𝑋𝑖1 and the
second component of 𝑍𝑖 are genuinely new instrumental variables
that were not included in the model in the first place

The existence of 𝑍𝑖2 is crucial to be able to estimate 𝛽

Depending on the dimension of 𝑍𝑖2 we call the system
dim 𝑍𝑖2 = dim 𝑋𝑖2 (exactly identified)
dim 𝑍𝑖2 > dim 𝑋𝑖2 (over identified)
dim 𝑍𝑖2 < dim 𝑋𝑖2 (under identified)
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Now we turn our attention to two reduced form regressions:

(i) regressing 𝑋𝑖 on 𝑍𝑖 (this is the first stage regression)
(ii) regressing 𝑌𝑖 on 𝑍𝑖

Think of the reduced form as an auxiliary regression that you are
using merely as a means to an end

You are not typically interested in the reduced form itself, you are
only using it as a tool

The reduced form is usually free of any economic meaning
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Reduced form for 𝑋𝑖 as dependent variable

Consider the multivariate regression model
𝑋𝑖 = 𝜋′𝑍𝑖 + 𝑣𝑖

This notation comprises 𝐾 regressions with each element of 𝑋𝑖 as a
dependent variable

Notice that dim 𝜋 = 𝐿 × 𝐾

Let 𝜋 = E(𝑍𝑖𝑍′
𝑖)−1E(𝑍𝑖𝑋′

𝑖), implying E(𝑍𝑖𝑣′
𝑖) = 0

(this means that the 𝜋 are the projection coefficients)
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Reduced form for 𝑌𝑖 as dependent variable

The reduced form for 𝑋𝑖 can be plugged into the original regression:
𝑌𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖

= (𝜋′𝑍𝑖 + 𝑣𝑖)′𝛽 + 𝑒𝑖

= 𝑍′
𝑖𝜆 + 𝑤𝑖,

with 𝜆 ∶= 𝜋𝛽 and 𝑤𝑖 ∶= 𝑣′
𝑖𝛽 + 𝑒𝑖

Notice that E(𝑍𝑖𝑤𝑖) = E(𝑍𝑖𝑣′
𝑖)𝛽 + E(𝑍𝑖𝑒𝑖) = 0

This means that 𝜆 is a projection coefficient, that is,
𝜆 = E(𝑍𝑖𝑍′

𝑖)−1E(𝑍𝑖𝑌𝑖)
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Collecting results: for the two reduced form coefficients we have
𝜆 = E(𝑍𝑖𝑍′

𝑖)−1E(𝑍𝑖𝑌𝑖)
𝜋 = E(𝑍𝑖𝑍′

𝑖)−1E(𝑍𝑖𝑋′
𝑖)

The rhs expressions are population moments which are uniquely
determined by the distribution that generates the observed data

This implies that 𝜆 and 𝜋 are uniquely determined too

They are identified

Great! But wait: we’re not interested in 𝜆 and 𝜋

Instead we want to know about 𝛽
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Identification of 𝛽 is not so straightforward, recall:
𝜋𝛽 = 𝜆

Our goal: solve for 𝛽

Can’t simply divide by 𝜋

Let’s think about the dimensions

• dim 𝜋 = 𝐿 × 𝐾
• dim 𝛽 = 𝐾 × 1
• dim 𝜆 = 𝐿 × 1

So 𝜋𝛽 = 𝜆 is a system of 𝐿 equations for 𝐾 unknowns

Linear algebra tells you that there

• are no solutions or infinitely many solutions if 𝐿 < 𝐾
• is hope for unique solution only if 𝐿 ≥ 𝐾

So let’s only consider 𝐿 ≥ 𝐾
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Today we’ll focus on the case 𝐿 = 𝐾

This case is usually called the exactly identified case

(Aside: 𝐿 > 𝐾 is called the over-identified case)

With 𝐿 = 𝐾, to solve 𝜋𝛽 = 𝜆 for 𝛽
we need rank 𝜋 = 𝐾 (full rank) to ensure a unique solution

Notice that 𝜋 is an upper triangular block matrix (see assignment 5)
for which rank 𝜋 = 𝐾1 + rank E(𝑍𝑖2𝑋′

𝑖2)

So it only boils down to whether or not rank E(𝑍𝑖2𝑋′
𝑖2) = 𝐾2

The IV relevance condition makes this happen
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Recall the IV relevance condition: rank E(𝑍𝑖𝑋′
𝑖) = 𝐾

This condition implies rank E(𝑍𝑖2𝑋′
𝑖2) = 𝐾2

The IV relevance condition therefore ensures that 𝜋 has full rank, so
that we can use matrix inversion to solve 𝜋𝛽 = 𝜆:

𝛽 = 𝜋−1𝜆
= E(𝑍𝑖𝑋′

𝑖)−1E(𝑍𝑖𝑍′
𝑖)E(𝑍𝑖𝑍′

𝑖)−1E(𝑍𝑖𝑌𝑖)
= E(𝑍𝑖𝑋′

𝑖)−1E(𝑍𝑖𝑌𝑖)

(we have used the fact that (𝐴𝐵)−1 = 𝐵−1𝐴−1)

This solution for 𝛽 motivates the IV estimator
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For the case 𝐿 = 𝐾, we’ve just obtained this solution:
𝛽 = E(𝑍𝑖𝑋′

𝑖)−1E(𝑍𝑖𝑌𝑖)

Applying the analogy principle delivers the estimator

Definition (Instrumental Variable Estimator)

̂𝛽IV = ⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑍𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑍𝑖𝑌𝑖⎞⎟
⎠

= (𝑍′𝑋)−1𝑍′𝑌

Aside: when there is only one endogenous variable and one
instrumental variable, then the IV estimator is simply

̂𝛽IV =
𝑠𝑍𝑌
𝑠𝑋𝑍

that is, sample covariance between 𝑍𝑖 and 𝑌𝑖 over the sample
covariance between 𝑋𝑖 and 𝑍𝑖
(we need this in week 9 when we look at the Wald estimator)
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In assignment 5 you are asked to show:

Proposition (Consistency of ̂𝛽IV)
̂𝛽IV = 𝛽 + o𝑝(1).

Proposition (Asymptotic Distribution of ̂𝛽IV)

√𝑁( ̂𝛽IV − 𝛽) d→ N (0, E(𝑍𝑖𝑋′
𝑖)−1E(𝑒2

𝑖 𝑍𝑖𝑍′
𝑖)E(𝑋𝑖𝑍′

𝑖)−1) .
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Some new terminology

You are interested in the effect of a treatment 𝑋𝑖 a person receives
on an outcome 𝑌𝑖

To keep things simple, the treatment is binary: 𝑋𝑖 ∈ {0, 1}

The outcome is a function of the treatment: 𝑌𝑖(𝑋𝑖)

Only two potential outcomes per person: 𝑌𝑖(0) and 𝑌𝑖(1)

The individual treatment effect (ITE) is: 𝑌𝑖(1) − 𝑌𝑖(0),
that is: the difference in potential outcomes

This is the effect of the treatment on person 𝑖

Problem:
The individual treatment effect is never observed
(bc only one of the potential outcomes is observed per person)
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How can we solve the problem of the missing counterfactual?

One idea would be to find an otherwise identical person 𝑗 ≠ 𝑖 who
did not receive the treatment

For that person, the observed factual would be 𝑌𝑗(0)

The individual treatment effect would be 𝑌𝑖(1) − 𝑌𝑗(0)

We do not observe if 𝑌𝑖(𝑝) = 𝑌𝑗(𝑝) for 𝑝 ∈ {0, 1}
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What else can be done?

We are moving goal posts:
Instead of studying the individual treatment effect we look at the
average treatment effect

The ATE is given by E (𝑌𝑖(1) − 𝑌𝑖(0))

It is the effect on the average person in the population

While it would be great to know about the ITE, learning about the ATE
also is immensely important

People who like to run regression want to know:
Can I estimate the ATE using OLS?

How does ATE relate to our regression 𝛽?
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The potential outcomes framework is closely related to the study of
randomized controlled trials (RCT)

RCTs have their roots in medical literature

A typical example is that of a medication that is randomly offered to
some part of a sample and a placebo treatment to the other part

What are examples of treatments in economics?

• job training
• changes of legislation
• reducing class size in primary school
• sending out fake CVs to employers

The point here is: you have found a credible way to assign treatment
randomly, that is 𝑋𝑖 can be viewed as random
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The potential outcomes framework can be mapped into a regression
model

In the data you observe (𝑋𝑖, 𝑌𝑖)

Still, to keep things simple, binary treatment: 𝑋𝑖 ∈ {0, 1}

Observed outcome is given by
𝑌𝑖 ∶= 𝑌𝑖(1) ⋅ 𝑋𝑖 + 𝑌𝑖(0) ⋅ (1 − 𝑋𝑖)

= (𝑌𝑖(1) − 𝑌𝑖(0))𝑋𝑖 + 𝑌𝑖(0)
= E (𝑌𝑖(0))⏟⏟⏟⏟⏟

𝛽0

+ (𝑌𝑖(1) − 𝑌𝑖(0))⏟⏟⏟⏟⏟⏟⏟
𝛽1𝑖

𝑋𝑖 + (𝑌𝑖(0) − E (𝑌𝑖(0)) )⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑢̃𝑖

= 𝛽0 + 𝛽1𝑖𝑋𝑖 + ̃𝑢𝑖

The last line looks like a regression
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Careful though:
𝑌𝑖 = 𝛽0 + 𝛽1𝑖𝑋𝑖 + ̃𝑢𝑖

The slope coefficient is indidvidual specific (it has an 𝑖-subscript)

The coefficient 𝛽1𝑖 is the individual treatment effect

You wouldn’t use OLS here unless you think that 𝛽1𝑖 is constant

Even then you would still need 𝐸(𝑋𝑖 ̃𝑢𝑖) = 0, which will be implied by
random treatment (as we show soon)
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Let’s turn 𝑌𝑖 = 𝛽0 + 𝛽1𝑖𝑋𝑖 + ̃𝑢𝑖 into a regression model in which the
slope coefficient does not have an 𝑖-subscript

𝑌𝑖 = E(𝑌𝑖(0)) + (𝑌𝑖(1) − 𝑌𝑖(0)) 𝑋𝑖 + (𝑌𝑖(0) − E(𝑌𝑖(0)))
= E(𝑌𝑖(0)) + (𝑌𝑖(1) − 𝑌𝑖(0)) 𝑋𝑖 + (𝑌𝑖(0) − E(𝑌𝑖(0)))

+ E (𝑌𝑖(1) − 𝑌𝑖(0)) ⋅ 𝑋𝑖 − E(𝑌𝑖(1) − 𝑌𝑖(0)) ⋅ 𝑋𝑖

= E(𝑌𝑖(0)) + E(𝑌𝑖(1) − 𝑌𝑖(0)) ⋅ 𝑋𝑖

+ ((𝑌𝑖(0) − E(𝑌𝑖(0)))

+ (𝑌𝑖(1) − 𝑌𝑖(0)) 𝑋𝑖 − E(𝑌𝑖(1) − 𝑌𝑖(0)) ⋅ 𝑋𝑖)

= 𝛽0 + 𝛽1 ⋅ 𝑋𝑖 + 𝑢𝑖,

where 𝛽0 ∶= E(𝑌𝑖(0)) and 𝛽1 ∶= E(𝑌𝑖(1) − 𝑌𝑖(0)) and everything in
big parentheses is 𝑢𝑖

Notice that 𝛽1 ∶= E (𝑌𝑖(1) − 𝑌𝑖(0)) is equal to the ATE
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For OLS go yield a good estimator of the ATE, need E(𝑋𝑖𝑢𝑖) = 0

Let’s investigate how we can obtain E(𝑋𝑖𝑢𝑖) = 0
E(𝑢𝑖|𝑋𝑖) = E((𝑌𝑖(0) − E(𝑌𝑖(0)))

+ (𝑌𝑖(1) − 𝑌𝑖(0)) 𝑋𝑖 − E(𝑌𝑖(1) − 𝑌𝑖(0)) ⋅ 𝑋𝑖|𝑋𝑖)

= E(𝑌𝑖(0)|𝑋𝑖) − E(E(𝑌𝑖(0))|𝑋𝑖)
+ E(𝑌𝑖(1)|𝑋𝑖) ⋅ 𝑋𝑖 − E(𝑌𝑖(0)|𝑋𝑖) ⋅ 𝑋𝑖

− E(E(𝑌𝑖(1))|𝑋𝑖) ⋅ 𝑋𝑖 + E(E(𝑌𝑖(0))|𝑋𝑖) ⋅ 𝑋𝑖

= E(𝑌𝑖(0)|𝑋𝑖) − E(𝑌𝑖(0))
+ E(𝑌𝑖(1)|𝑋𝑖) ⋅ 𝑋𝑖 − E(𝑌𝑖(0)|𝑋𝑖) ⋅ 𝑋𝑖

− E(𝑌𝑖(1)) ⋅ 𝑋𝑖 + E(𝑌𝑖(0)) ⋅ 𝑋𝑖
?= E(𝑌𝑖(0)) − E(𝑌𝑖(0))

+ E(𝑌𝑖(1)) ⋅ 𝑋𝑖 − E(𝑌𝑖(0)) ⋅ 𝑋𝑖

− E(𝑌𝑖(1)) ⋅ 𝑋𝑖 + E(𝑌𝑖(0)) ⋅ 𝑋𝑖

= 0
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The fourth equality follows if 𝑋𝑖 is assigned randomly
(treatment effect literature typically writes: (𝑌𝑖(1), 𝑌𝑖(0)) ⟂⟂ 𝑋𝑖)

The conclusion follows because
E(𝑋𝑖𝑢𝑖) = E (E(𝑋𝑖𝑢𝑖|𝑋𝑖)) = E (𝑋𝑖 ⋅ E(𝑢𝑖|𝑋𝑖)) = 0

So, given random assignment, we obtain the desired result that OLS
results in a good estimator of the average treatment effect:

Theorem (OLS in Randomized Controlled Trial)
Suppose you have available data (𝑋𝑖, 𝑌𝑖) from a randomized
controlled trial. In particular, 𝑋𝑖 is a randomly assigned treatment
dummy variable. Then the OLS estimator of 𝛽1 in the model
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖 is a consistent estimator of the average
treatment effect E (𝑌𝑖(1) − 𝑌𝑖(0)).
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What if you cannot effectively randomize treatment?

Earlier I said that job training is a treatment

In practice, there’s no way you can randomly assign job training as a
treatment and expect full compliance

If you cannot effectively randomize treatment then 𝑋𝑖 may not be
independent of potential outcomes

There’s a clever work around:
randomize eligibility for treatment instead

Let 𝑍𝑖 be eligibility for treatment, with 𝑍𝑖 ∈ {0, 1}

It is not a coincidence that we are using the letter 𝑍𝑖 here:
eligibility will play the role of an instrumental variable

We conjecture that ̂𝛽IV could be a good estimator in this setting

Is this true? Does ̂𝛽IV estimate the ATE?
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Like before, let’s study a model in which treatment effect is
heterogeneous

𝑌𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑋𝑖 + 𝑢𝑖 (equation of interest)
𝑋𝑖 = 𝜋0𝑖 + 𝜋1𝑖𝑍𝑖 + 𝑣𝑖 (first stage)

where
𝛽1𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0)
𝜋1𝑖 = 𝑋𝑖(1) − 𝑋𝑖(0),

with 𝑌𝑖(𝑝) = 𝑌𝑖(𝑋𝑖 = 𝑝) and 𝑋𝑖(𝑝) = 𝑋𝑖(𝑍𝑖 = 𝑝) for 𝑝 ∈ {0, 1}

Using a little bit of math, it can be shown that

̂𝛽IV =
E (𝛽1𝑖 ⋅ 𝜋1𝑖)
E (𝜋1𝑖)

+ o𝑝(1) ≠ E (𝛽1𝑖) + o𝑝(1)

(you will show this in assignment 9)
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Two results here:

• IV estimator does not converge to the ATE
(bad news?)

• Instead it converges to E (𝛽1𝑖 ⋅ 𝜋1𝑖) /E (𝜋1𝑖)
(looks complicated)

Let’s take a closer look at the probability limit

For no apparent reason, let’s call it LATE

LATE ∶=
E (𝛽1𝑖 ⋅ 𝜋1𝑖)
E (𝜋1𝑖)

What is LATE and how does it relate to ATE?
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Here is a useful way to contrast them:

ATE = E (𝛽1𝑖)

LATE =
E (𝛽1𝑖 ⋅ 𝜋1𝑖)
E (𝜋1𝑖)

= E(𝛽1𝑖 ⋅
𝜋1𝑖

E (𝜋1𝑖)
)

• interpret 𝜋1𝑖
E(𝜋1𝑖)

as weights
• then the rhs is equal to the expected value of 𝛽1𝑖 adjusted for
these weights

• in other words: the rhs is a weighted average of 𝛽1𝑖

• ideally, we would not want any weights in there
(because we are after the ATE, which is the simple average)

• some intuition for the weights:
when 𝜋1𝑖 is large relative to E(𝜋1𝑖) then the weight is large;
therefore people with large 𝜋1𝑖 influence the IV estimator more
(their 𝑍𝑖 have a strong impact on 𝑋𝑖)
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Putting things together: ̂𝛽IV estimates the causal effect for those
individuals for whom 𝑍𝑖 is most influential
(those with large 𝜋1𝑖)

LATE is the acronym for local average treatment effect

The LATE can be understood as the ATE for the subpopulation whose
treatment 𝑋𝑖 is most heavily influenced by the instrument 𝑍𝑖

LATE is an ATE only for this peculiar (“local”) subpopulation; it is not
equal to the ATE in the population
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Actually, we can express LATE as a function in ATE:

Notice that Cov(𝛽1𝑖, 𝜋1𝑖) = E (𝛽1𝑖 ⋅ 𝜋1𝑖) − E(𝛽1𝑖) ⋅ E(𝜋1𝑖)

It follows

LATE ∶=
E(𝛽1𝑖 ⋅ 𝜋1𝑖)
E(𝜋1𝑖)

=
E(𝛽1𝑖)E(𝜋1𝑖) + Cov(𝛽1𝑖, 𝜋1𝑖)

E(𝜋1𝑖)

= E(𝛽1𝑖) +
Cov(𝛽1𝑖, 𝜋1𝑖)

E(𝜋1𝑖)

= ATE+
Cov(𝛽1𝑖, 𝜋1𝑖)

E(𝜋1𝑖)

In words: LATE equals ATE plus “some stuff”
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From previous slide

LATE = ATE+
Cov(𝛽1𝑖, 𝜋1𝑖)

E(𝜋1𝑖)

But what exactly is “some stuff”?

It is the covariance between the two individual-specific parameters
𝛽1𝑖 and 𝜋1𝑖

If the treatment effect 𝛽1𝑖 tends to be large for individuals for whom
the effect of the instrument 𝜋1𝑖 is also large, then Cov(𝛽1𝑖, 𝜋1𝑖) > 0
and therefore LATE > ATE
(supposing E(𝜋1𝑖) > 0)

On the other hand, if the treatment effect 𝛽1𝑖 tends to be small for
individuals for whom the effect of the instrument 𝜋1𝑖 is also large,
then Cov(𝛽1𝑖, 𝜋1𝑖) < 0 and therefore LATE < ATE
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When does IV estimate the ATE?

• If 𝛽1𝑖 = 𝛽1 (no heterogeneity in equation of interest)
• If 𝜋1𝑖 = 𝜋1 (no heterogeneity in first stage equation)
• If 𝛽1𝑖 and 𝜋1𝑖 vary but are independently distributed

But these three are unrealistic

In general, ̂𝛽IV does not estimate ATE

Whether this is important depends on the application
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Define four exhaustive and mutually exclusive types based on their
treatment response wrt to a particular value of 𝑍𝑖 ∈ {0, 1}

⎧{{{{
⎨{{{{⎩

always taker 𝑋𝑖(0) = 1 and 𝑋𝑖(1) = 1
complier 𝑋𝑖(0) = 0 and 𝑋𝑖(1) = 1
defier 𝑋𝑖(0) = 1 and 𝑋𝑖(1) = 0
never taker 𝑋𝑖(0) = 0 and 𝑋𝑖(1) = 0

This results in the following values of 𝜋1𝑖 for these types:
𝜋1𝑖 = 𝑋𝑖(1) − 𝑋𝑖(0)

=

⎧{{{{
⎨{{{{⎩

0 always taker
1 complier
−1 defier
0 never taker
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Let’s say the proportions of these four types are
𝜏𝐴𝑇, 𝜏𝐶, 𝜏𝐷, 𝜏𝑁𝑇, adding up to one

Furthermore, for simplicity claim that 𝜏𝐷 = 0 (no defiers)

Then
E(𝜋1𝑖) = 𝜏𝐴𝑇E(𝜋1𝑖|𝐴𝑇) + 𝜏𝐶E(𝜋1𝑖|𝐶) + 𝜏𝑁𝑇E(𝜋1𝑖|𝑁𝑇)

= 𝜏𝐶E(𝜋1𝑖|𝐶)
= 𝜏𝐶

Likewise
E (𝛽1𝑖 ⋅ 𝜋1𝑖) = 𝜏𝐶E (𝛽1𝑖|𝐶)

Therefore
LATE =

E (𝛽1𝑖 ⋅ 𝜋1𝑖)
E (𝜋1𝑖)

= E (𝛽1𝑖|𝐶) ≠ E (𝛽1𝑖)
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So
LATE = E (𝛽1𝑖|𝐶)

= E (𝑌𝑖(1) − 𝑌𝑖(0)|𝐶)

This is important because it says that LATE is the ATE for the
subpopulation of compliers

The four types AT, NT, D, and C differ in how their outcomes respond
to a treatment

We would not expect a homogenous treatment effect, that is, each of
these four types would have the same treatment effect

LATE is the treatment effect for one particular type, the compliers

IV estimation successfuly estimates that local treatment effect
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When 𝑍𝑖 is binary, there’s a special form for the IV estimator

̂𝛽IV =
𝑠𝑍𝑌
𝑠𝑋𝑍

=
Ê(𝑌𝑖|𝑍𝑖 = 1) − Ê(𝑌𝑖|𝑍𝑖 = 0)
Ê(𝑋𝑖|𝑍𝑖 = 1) − Ê(𝑋𝑖|𝑍𝑖 = 0)

It is customary to write
̂𝛽IV =

𝑌̄1 − 𝑌̄0
𝑋̄1 − 𝑋̄0

with

𝑌̄1 ∶=
∑𝑁

𝑖=1 𝑍𝑖𝑌𝑖

∑𝑁
𝑖=1 𝑍𝑖

𝑌̄0 ∶=
∑𝑁

𝑖=1(1 − 𝑍𝑖)𝑌𝑖

∑𝑁
𝑖=1(1 − 𝑍𝑖)

𝑋̄1 ∶=
∑𝑁

𝑖=1 𝑍𝑖𝑋𝑖

∑𝑁
𝑖=1 𝑍𝑖

𝑋̄0 ∶=
∑𝑁

𝑖=1(1 − 𝑍𝑖)𝑋𝑖

∑𝑁
𝑖=1(1 − 𝑍𝑖)

This represenation of ̂𝛽IV is called the Wald estimator

More generally, the Wald estimator is really any estimator that
compares averages in grouped data as portrayed here
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Let me present an application taken from Angrist and Pischke,
“Mostly Harmless Econometrics”, (2008)

The actual underlying paper is Bloom et al., “The Benefits and Costs
of JTPA Title II-A Programs: Key Findings from the National Job
Training Partnership Act Study”, (1997)

Note:
I will be presenting a much simplified version of the paper
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Background for understanding the paper

Their research question:
Is job training beneficial for economically disadvantaged adults?

People were randomly made eligible for job training

This is an example where treatment was not randomly assigned but
instead the eligibility for treatment was

Key variables:

• 𝑋𝑖: treatment dummy equal 1 if received job training
• 𝑍𝑖: dummy equal 1 if offered job training
(randomly assigned)

• 𝑌𝑖: total earnings in the 30-months period after random
assignment
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Typical example of one-sided compliance:
𝑍𝑖 = 0 ⇒ 𝑋𝑖 = 0
𝑍𝑖 = 1 ⇒ 𝑋𝑖 ∈ {0, 1}

A person in the control group cannot access treatment

You might expect that 𝑋𝑖 = 𝑍𝑖

But many people refuse the offer of treatment (takes effort!)

In the job training example
P̂r(𝑋𝑖 = 1|𝑍𝑖 = 1) = Ê(𝑋𝑖|𝑍𝑖 = 1) ≈ 0.6
P̂r(𝑋𝑖 = 1|𝑍𝑖 = 0) = Ê(𝑋𝑖|𝑍𝑖 = 0) ≈ 0.02

More or less confirms one-sided compliance

The estimation results…
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(1) (2) (3) (4)
OLS ITT LATE

Ê(𝑌𝑖|𝑋𝑖 = 1) Ê(𝑌𝑖|𝑍𝑖 = 1) Ê(𝑋𝑖|𝑍𝑖 = 1)
−Ê(𝑌𝑖|𝑋𝑖 = 0) −Ê(𝑌𝑖|𝑍𝑖 = 0) −Ê(𝑋𝑖|𝑍𝑖 = 0) (2) / (3)

Men $3,970 $1,117 0.61 $1,825
Women $2,133 $1,243 0.64 $1,942

ITT: intention-to-treat effect; the effect you would have calculated
under full compliance (that is, if it had been true that 𝑋𝑖 = 𝑍𝑖)

Here ITT gives you a sort of lower bound

But compliance was only around 60% therefore ITT underestimates
LATE

LATE is the treatment effect for compliers:
the subpopulation who are willing to take the treatment if offered
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