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Instrumental Variables Estimation

Motivation



We have discussed two types of linear models:

linear projection: Y; = XIB* + u; E(u;X;) =0
linear regression: Y; =X/B+e E(e;lX;) =0

If we are only interested in B*, then OLS is best

The linear regression model can also be estimated via OLS
because E(e;|X;) = 0 implies E(¢;X;) =0

But it is more restrictive: it says that the E(Y;|X;) is linear
It defines a structural model that is very simplistic:

it basically states that the projection is the structural relation of
interest



In practice, we are often dealing with this model instead:
Yi = X;ﬁ + el' E(eiXi) # 0

It is often called structural model to emphasize that § is the
coefficient of interest
Correspondingly, B is called structural parameter

| find this terminology unfortunate, because there is nothing
inherently structural about these “models”

They are simple regression equations with the complication that
should not be estimated via OLS
(because E(e;X;) # 0, and so B isn't the projection coefficient)

When E(e; X;) # 0 we say that X; is endogenous
Clearly, E(e;|X;) # 0



The three textbook examples of endogeneity are

- measurement error
- simultaneity, simultaneous equations, and

- omitted variable bias

Let’s have a look



Measurement Error

Let’s say the “true” model is
Yi = X;ﬁ + el‘, E(el"Xl') == O
If you had data on (X;,Y;) then OLS would be best

But let’s say you only observe (X;,Y;) with X; = X; + r; where r; is a
measurement error statistically independent of ¢; and X;

Despite its randomness, this error causes serious problems:
Y; = X/B+v, where v; := ¢; — 7/

Can you safely use OLS here? Assuming Er; = 0,
EX) = E((X;+1)(e;—1iB)) = —E(r#)B #0

No you cannot! (unless g = 0 or E(r;r}) = 0)



Simultaneity, Simultaneous Equations

Consider the following two equation model
Yip=XpB1+61Yn+en
Yio = Xippo+ 62Yin +ep
Let X;; and X;, be well behaved in the sense:
E(en Xi1) = E(ej1Xn) = E(epnXi1) = E(ejpXip) =0
Further assume E(e;e;0) = 0 to keep things simple

Using Y;; and Y, as regressors is problematic:
E(einYin) = E(en(XjpB2 + 02Yin +ep)) = 02E(ein Yin)
= 0, (e (Xj1B1 + 601 Yip +ei1))
= 010,E (e Yp) + 07

— 2 2
=1=0,6,°1 70

where o2 := Var (e;;)



Therefore, in the two equation model
Yin=XiB1+601Ynteq
Yio = XjpBo + Y +ep

the errors are not uncorrelated with all regressors

(%)
E(ei1Yip) = = 2 E(epYir) =

0
1—0,6,"1

1-0,0, 2

If 6, = 0, then the first equation doesn't have an endogeneity
problem and OLS is fine (similarly #; = 0 for second equation)



Omitted Variables Bias

A simple model illustrates the main idea
Y; = Xinp1+ Xinpo + 1
where E(u;1X;1) =0, E(X;51X;1) # 0 and you don't observe X;,
You have to omit X;, from the regression
Effectively you are facing the model
Yi=Xnpr+e  e:=Xpbr+uy;
where E(e;|X;1) #0
Is this a problem?

Only if E(e;X;1) # 0 which may well be the case



Instrumental Variables Estimation

Main Idea in a Nutshell



Let's say you have got three scalar rvs X;, Y;, Z; and you have the

model
Y, =X;B+e; (structural equation)

X, =Z;m+v,, E(v;Z;) =0 (first stage regression)

Notice: first stage is simply a projection
Your research interest is B
Should you use OLS to estimate it? Yes if
. E(ei|Xi) = 0
(then you don't really need Z; at all)

* E(€i|Xi) :,é 0 bUt E(ein') = 0
(case of omitted variable non-bias)

In short: you need E(e;X;) = 0 for OLS to make sense



What if E(e;X;) # 0
Then the existence of Z; will be helpful as long as E(e;Z;) = 0

Notice that E(e;Z;) = 0 implies that E(e;u;) # 0, that is,
the error terms of both equations must be correlated

How does Z; help?
Combine the two equations to get

Y, =Z,;B + (e; + v;8)

=Z,tB+w,,

where E(w;Z;) =0
Therefore you can consistently estimate 78
Of course you can also consistently estimate 7
Simple idea: divide the estimator of 7 by the estimator of

It follows that you can back out a consistent estimator of B



Alternative motivation: estimate § in two stages

(i) Estimate 7r via OLS in the first stage regression,
create X; = ftZ;
(i) Regress Y on X; using OLS
The estimator from stage (i) is numerically identical to the one from

the procedure explained on the preceding slide

Why should this make sense?
Why can you use X; but not X; in the structural equation?

Intuition: writing X; = X; + 9; we see that

- X; captures the variation of X; that is exogenous

- 9, captures the variation of X; that is endogenous



This little example provides a lot of the main ideas about IV
estimation already

Unfortunately, however, things get considerably more intricate and
complicated once the setup is generalized

It is very important to discuss this extensively in the lecture
IV .and 2SLS estimation are pervasive in economics

I'm not sure you can publish a paper only based on OLS
People always cry “endogeneity!” and ask for an instrument

Let’s properly understand the pros and cons, and provide best
practices



Instrumental Variables Estimation

General Setup



Starting point is the following partition of the linear model
Yi = Xl’ﬁ + el'
= Xi1B1+ XiPa e
Where dlmﬁl = dimXﬂ = Kl X 1

dlm‘Bz = dimeZ = Kz x 1 W|th Kl +K2 =K

The two types of regressors are characterized by
E(e;X;1) =0 (exogenous regressors)

E(e;X;») # 0 (endogenous regressors)

This immediately tells you that g # p*

Should we use OLS to estimate B?



No, we shouldn't use OLS to estimate S

BO% will consistently estimate 8*, but g # g*
We need something new

Enter the instrumental variable:

Definition (Instrumental Variable (1V))

A L x 1 vector Z; is called an instrumental variable (1) if
(i) E(Zie;) =0 instrument exogeneity

(i) rank E(Z;X}) =K instrument relevance

Notice that X;; does satisfy (i) and will always be included in Z;
Intuition for (ii): nonzero correlation between X; and Z;

A necessary condition for (ii) is L > K
(at least as many equations as unknowns)



Think of Z; as partitioned like so:
o=(2)-C2)
l Zip Ziy
Let dim Z;, = Ly; itis clear that dimZ;; = K

In other words, the first component of Z; is always X;; and the
second component of Z; are genuinely new instrumental variables
that were not included in the model in the first place

The existence of Z;, is crucial to be able to estimate

Depending on the dimension of Z;, we call the system
dim Z,, = dim X;, (exactly identified)
dim Z;5 > dim X, (over identified)
dimZ; < dim X;, (under identified)



Instrumental Variables Estimation

Identification



Now we turn our attention to two reduced form regressions:

(i) regressing X; on Z; (this is the first stage regression)

(i) regressing Y; on Z;
Think of the reduced form as an auxiliary regression that you are
using merely as a means to an end

You are not typically interested in the reduced form itself, you are
only using it as a tool

The reduced form is usually free of any economic meaning



Reduced form for X; as dependent variable
Consider the multivariate regression model
Xi = 7'[,Zi + 0;
This notation comprises K regressions with each element of X; as a
dependent variable
Notice that dim = L x K

Let T = E(Z,Z}))YE(Z;X}), implying E(Z0}) = 0
(this means that the 7r are the projection coefficients)



Reduced form for Y; as dependent variable

The reduced form for X; can be plugged into the original regression:
Y, =XB+e;
=('Z;+v)'B+e;
= Z;-/\ + w;,

with A := 7'[[3 and w; = U;‘B +e;

Notice that E(lel) = E(ZZU;)IB + E(Zl‘ei) =0

This means that A is a projection coefficient, that is,
A=EZZ)TEZYy)



Collecting results: for the two reduced form coefficients we have
A =E(ZZ)TEZ,Yy)
e = B i)
The rhs expressions are population moments which are uniquely
determined by the distribution that generates the observed data
This implies that A and 7t are uniquely determined too
They are identified
Great! But wait: we're not interested in A and 7

Instead we want to know about g



Identification of B is not so straightforward, recall:
B=A

Our goal: solve for B
Can't simply divide by 7t

Let’s think about the dimensions

- dimm = LxK
- dimB=Kx1
- dimA =Lx1

So B = Ais a system of L equations for K unknowns

Linear algebra tells you that there

- are no solutions or infinitely many solutions if L < K

- is hope for unique solution only if L > K

So let’s only consider L > K



Today we'll focus on the case L = K
This case is usually called the exactly identified case
(Aside: L > K is called the over-identified case)

With L = K, to solve g = A for B
we need rank 7t = K (full rank) to ensure a unique solution

Notice that 7t is an upper triangular block matrix (see assignment 5)
for which rank 7t = Ky + rank E(Z»X},)

So it only boils down to whether or not rank E(Z;,X},) = K;

The IV relevance condition makes this happen



Recall the IV relevance condition: rank E(Z;X}) = K
This condition implies rank E(Z,5X},) = K;
The IV relevance condition therefore ensures that 7 has full rank, so
that we can use matrix inversion to solve 7t = A:
B=nrn"1A
= E(Z;X))"YE(Z,ZHE(Z,Z) TIE(Z,Y )
= E(Z;X)LE(Z;Y))

(we have used the fact that (AB)~1 = B-1A4-1)

This solution for B motivates the IV estimator



Instrumental Variables Estimation

Definition of IV Estimator



For the case L = K, we've just obtained this solution:
B =EZX)TEZY))

Applying the analogy principle delivers the estimator

Definition (Instrumental Variable Estimator)

N -1 N
BV = (% Zzixg) (%] ZZin-) = @Z'X)"1z2'Y
i=1 i=1

Aside: when there is only one endogenous variable and one

instrumental variable, then the IV estimator is simply
gv = f2x
5xz

that is, sample covariance between Z; and Y; over the sample
covariance between X; and Z;
(we need this in week 9 when we look at the Wald estimator)



Instrumental Variables Estimation

Large Sample Properties of IV Estimator



In assignment 5 you are asked to show:

Proposition (Consistency of 8'V)
BY = B+ o0,).

Proposition (Asymptotic Distribution of g'V)
INBY = B) S N (0, EZ, X)) E@2Z:Z)EXZH 1) .



Instrumental Variables Estimation

Potential Outcomes Framework, Treatment Effects



Some new terminology

You are interested in the effect of a treatment X; a person receives
on an outcome Y;

To keep things simple, the treatment is binary: X; € {0, 1}
The outcome is a function of the treatment: Y;(X;)
Only two potential outcomes per person: Y;(0) and Y;(1)

The individual treatment effect (ITE) is: Y;(1) — Y;(0),
that is: the difference in potential outcomes

This is the effect of the treatment on person i

Problem:
The individual treatment effect is never observed
(bc only one of the potential outcomes is observed per person)



How can we solve the problem of the missing counterfactual?

One idea would be to find an otherwise identical person j # i who
did not receive the treatment

For that person, the observed factual would be Yj(O)
The individual treatment effect would be Y;(1) — Y]-(O)
We do not observe if Y;(p) = Y]-(p) forp € {0,1}



What else can be done?

We are moving goal posts:
Instead of studying the individual treatment effect we look at the
average treatment effect

The ATE is given by E (Y;(1) — Y;(0))
It is the effect on the average person in the population

While it would be great to know about the ITE, learning about the ATE
also is immensely important

People who like to run regression want to know:
Can | estimate the ATE using OLS?

How does ATE relate to our regression 7?



The potential outcomes framework is closely related to the study of
randomized controlled trials (RCT)

RCTs have their roots in medical literature

A typical example is that of a medication that is randomly offered to
some part of a sample and a placebo treatment to the other part

What are examples of treatments in economics?
- job training
- changes of legislation
- reducing class size in primary school
- sending out fake CVs to employers

The point here is: you have found a credible way to assign treatment
randomly, that is X; can be viewed as random



The potential outcomes framework can be mapped into a regression
model

In the data you observe (X;,Y;)
Still, to keep things simple, binary treatment: X; € {0,1}

Observed outcome is given by
Yi = Yl(l) . Xi + YI(O) . (1 - XZ)
= (Y;(1) = Y;(0))X; + Y;(0)
= E(Y;(0)) + (Y;(1) = Y;(0)) X; + (Y;(0) —E(Y;(0)) )
Bo Bii il;
= Bo + P1iX; + 1l

The last line looks like a regression



Careful though:
Y; = po + P X; + i
The slope coefficient is indidvidual specific (it has an i-subscript)
The coefficient B4; is the individual treatment effect
You wouldn't use OLS here unless you think that By; is constant

Even then you would still need E(X;#i;) = 0, which will be implied by
random treatment (as we show soon)



Let's turn Y; = By + B1;X; + 1i; into a regression model in which the
slope coefficient does not have an i-subscript

Y; = E(Y;(0)) + (Y;(1) = Y;(0)) X; + (Y;(0) — E(Y;(0)))
= E(Y;(0)) + (Vi (1) = Y;3(0)) X; + (Y;(0) — E(Y;(0)))
+E(Y;(D) = Y3(0)) - X; — E(Y3(1) = Y3(0)) - X;
= E(Y;(0)) + E(Y;(1) = Y3(0)) - X;
+ ((Y3(0) — E(Y;(0)))
+ (Y1) = Y;(0)) X; — E(Y;(1) = Y3(0)) - X;)
=pPo+pB1-Xi+uy
where By := E(Y;(0)) and B, := E(Y;(1) — Y;(0)) and everything in
big parentheses is u;

Notice that B1 := E(Y;(1) — Y;(0)) is equal to the ATE



For OLS go yield a good estimator of the ATE, need E(X;u;) =0
Let's investigate how we can obtain E(X;u;) =0
EuylX;) = E((Y4(0) — E(Y;(0)))
+ (Yi(1) = Y;(0)) X; — E(Y;(1) = Y;(0)) - X,1X;)
= E(Y;(0)1X;) — E(E(Y;(0))1X))
+E(Y(DIX) - X; — EYV(0)1X)) - X;
— ECECY;(INIX)) - X; + EE(Y;(0))IX)) - X;
= E(Y;(0)I1X;) — E(Y;(0))
+EY;(DIX) - X — E(Y0)[X)) - X;
—E(Y;(D) - X; + E(Y3(0)) - X;
£ E(Y;(0)) — E(Y;(0))
+ E(Y;(1)) - X; — E(Y;(0)) - X;
—E(Y;(1) - X; + E(Y;(0)) - X;
=0



The fourth equality follows if X; is assigned randomly
(treatment effect literature typically writes: (Y;(1),Y;(0)) 1L X;)

The conclusion follows because

E(Xz'ui) = E (E(XZuZ|Xl)) = E (XZ . E(MZ|XZ)) = 0

So, given random assignment, we obtain the desired result that OLS
results in a good estimator of the average treatment effect:

Theorem (OLS in Randomized Controlled Trial)

Suppose you have available data (X;,Y;) from a randomized
controlled trial. In particular, X; is a randomly assigned treatment
dummy variable. Then the OLS estimator of B in the model

Y; = Bo + B1X; + u; is a consistent estimator of the average
treatment effect E (Y;(1) — Y;(0)).



Instrumental Variables Estimation

Treatment Heterogeneity: What is IV Estimating?



What if you cannot effectively randomize treatment?
Earlier | said that job training is a treatment

In practice, there's no way you can randomly assign job training as a
treatment and expect full compliance

If you cannot effectively randomize treatment then X; may not be
independent of potential outcomes

There's a clever work around:
randomize eligibility for treatment instead

Let Z; be eligibility for treatment, with Z; € {0, 1}

It is not a coincidence that we are using the letter Z; here:
eligibility will play the role of an instrumental variable

We conjecture that 8" could be a good estimator in this setting

Is this true? Does B estimate the ATE?



Like before, let's study a model in which treatment effect is
heterogeneous
Y; = Boi + P1iXi + U (equation of interest)

X; = 1o + 2 + v; (first stage)
where

B1i = Y;(1) = Y;(0)

1 = X;(1) = X;(0),
Using a little bit of math, it can be shown that

(B1i - 1;)

~ E
pY = ET) +0,(1) # E(B1;) +0,(1)

(you will show this in assignment 9)



Two results here:
- IV estimator does not converge to the ATE
(bad news?)
- Instead it converges to E (Bq; - 7y;) /E (71q;)
(looks complicated)
Let’s take a closer look at the probability limit

For no apparent reason, let’s call it LATE
LATE := E (Byi - 7111)

E (714)

What is LATE and how does it relate to ATE?



Here is a useful way to contrast them:

ATE = E (B1,)
_E(ﬁli'ﬂli)_ %
M= e ‘E<ﬁ11 E(m»)

- then the rhs |s equal to the expected value of B;; adjusted for
these weights

- in other words: the rhs is a weighted average of By;
- ideally, we would not want any weights in there
(because we are after the ATE, which is the simple average)

- some intuition for the weights:
when ty; is large relative to E(7ry;) then the weight is large;
therefore people with large 7ry; influence the IV estimator more
(their Z; have a strong impact on X;)



Putting things together: BV estimates the causal effect for those
individuals for whom Z; is most influential
(those with large 7ty;)

LATE is the acronym for local average treatment effect

The LATE can be understood as the ATE for the subpopulation whose
treatment X; is most heavily influenced by the instrument Z;

LATE is an ATE only for this peculiar (“local”) subpopulation; it is not
equal to the ATE in the population



Actually, we can express LATE as a function in ATE:
Notice that COV(ﬁli, 7'[11') = [g (ﬂli o 7'[11') = E(ﬁll) o E(nli)

It follows
E(B1i - t14)
E(7ty7)
E(B1;)E(7t1;) + Cov(Bq;, 7T11)
E(7T1i)
Cov(Bq;, 1)
Cov(B1;, 71;)
E(T[li)

LATE :=

= ATE +

In words: LATE equals ATE plus “some stuff”



From previous slide

LATE = ATE + V(1 )
E(rrys)

But what exactly is “some stuff”?

It is the covariance between the two individual-specific parameters
B1i and 7ty;

If the treatment effect By; tends to be large for individuals for whom
the effect of the instrument 7y, is also large, then Cov(By;, t1;) >0
and therefore LATE > ATE

(supposing E(rty;) > 0)

On the other hand, if the treatment effect y; tends to be small for
individuals for whom the effect of the instrument 7ry; is also large,
then Cov(By;, 711;) < 0 and therefore LATE < ATE



When does IV estimate the ATE?

- If B1; = B1 (no heterogeneity in equation of interest)
- If 711; = 7y (no heterogeneity in first stage equation)
- If B1; and 7ty; vary but are independently distributed
But these three are unrealistic
In general, 8" does not estimate ATE

Whether this is important depends on the application



Define four exhaustive and mutually exclusive types based on their
treatment response wrt to a particular value of Z; € {0, 1}

always taker X;(0) =1and X;(1) =1
complier X;(0) =0and X;(1) =1
defier X;(0)=1and X;(1) =0
never taker  X;(0) =0and X;(1) =0

This results in the following values of 7ty; for these types:
my; = X;(1) — X;(0)
0  always taker
1 complier
—1 defier
0  never taker



Let’s say the proportions of these four types are
TAaT, TCy T, TNT add|ng up to one

Furthermore, for simplicity claim that 7 = 0 (no defiers)

Then
E(7117) = TAoTE(myilAT) + TcE(71941C) + TNnTE(7Ty;INT)
= TcE(7my;1C)
= TC
Likewise

E(B1i- i) = TcE (B1ilC)

Therefore

LATE = E(B1i- ;)

E () = E(B1ilC) # E(B1:)



So
LATE = E (B1,IC)

= E(Y;(1) = Y;(0)IC)

This is important because it says that LATE is the ATE for the
subpopulation of compliers

The four types AT, NT, D, and C differ in how their outcomes respond
to a treatment

We would not expect a homogenous treatment effect, that is, each of
these four types would have the same treatment effect

LATE is the treatment effect for one particular type, the compliers

IV estimation successfuly estimates that local treatment effect



When Z; is binary, there's a special form for the IV estimator
AV Sz_y _ E(YZ|ZI = 1) — E(YIIZI = 0)
sxz  E(XjZ; =1) - E(X;1Z; = 0)

It is customary to write

v L= Y,
X1 —Xo
with N N
ISP A ¢ o X (I=2Zy)Y;
Yl = N— YO pr— N—
Zizl Zz‘ Zizl(l _Zz‘)
N N
o 21 ZiX; IRV M).€
Xl = N— XO o= N—
Zi:l Z; Zi:l(l )

This represenation of 8V is called the Wald estimator

More generally, the Wald estimator is really any estimator that
compares averages in grouped data as portrayed here



Instrumental Variables Estimation

Example



Let me present an application taken from Angrist and Pischke,
“Mostly Harmless Econometrics”, (2008)

The actual underlying paper is Bloom et al,, “The Benefits and Costs
of JTPA Title II-A Programs: Key Findings from the National Job
Training Partnership Act Study”, (1997)

Note:

| will be presenting a much simplified version of the paper



Background for understanding the paper

Their research question:
Is job training beneficial for economically disadvantaged adults?

People were randomly made eligible for job training

This is an example where treatment was not randomly assigned but
instead the eligibility for treatment was

Key variables:

- X;: treatment dummy equal 1 if received job training

- Z;; dummy equal 1 if offered job training
(randomly assigned)

- Y;: total earnings in the 30-months period after random
assignment



Typical example of one-sided compliance:
Zi =0= Xl' =]()

Z;=1=X;€{0,1}

A person in the control group cannot access treatment
You might expect that X; = Z;
But many people refuse the offer of treatment (takes effort!)

In the job training example
Pr(X;=1Z;=1) =EX,|1Z;=1) = 0.6
Pr(X; =1|Z; = 0) = E(X;1Z; = 0) = 0.02

More or less confirms one-sided compliance

The estimation results...



(1) (2) 3) (4)
OLS ITT LATE
EYiX; =1) EYiZ;=1) EXilz;=1)
-E(YiIX;=0) —-E(YiZ;=0) -EXiZ;=0) (2)/(3)
Men $3,970 $1,117 0.61 $1,825
Women $2,133 $1,243 0.64 $1,9l+2

ITT: intention-to-treat effect; the effect you would have calculated
under full compliance (that is, if it had been true that X; = Z;)

Here ITT gives you a sort of lower bound

But compliance was only around 60% therefore ITT underestimates
LATE

LATE is the treatment effect for compliers:
the subpopulation who are willing to take the treatment if offered
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