Assignment 6

(due: Tuesday week 7, 11:00am)
Submission Instructions: Same as last week.

Exercises

Provide transparent derivations. Justify steps that are not obvious. Use self sufficient proofs. Make reasonable assumptions where necessary.

Let $Y_{i}=X_{i}^{\prime} \beta+e_{i}$ with $\mathrm{E}\left(e_{i} X_{i}\right) \neq 0$. You have available Z_{i} with $\mathrm{E}\left(e_{i} Z_{i}\right)=0$ and $\operatorname{dim} Z_{i}=L \geq$ $\operatorname{dim} X_{i}=K$. Consider the estimator

$$
b_{P}:=\left(\sum_{i=1}^{N}\left(P Z_{i}\right) X_{i}^{\prime}\right)^{-1}\left(\sum_{i=1}^{N}\left(P Z_{i}\right) Y_{i}\right),
$$

where $\operatorname{dim} P=K \times L$. Different choices for the matrix P result in different estimators. For example, the simple IV estimator for the exactly identified case simply sets $P=I$.
It can be shown that another choice, namely $P=P^{*}:=\mathrm{E}\left(X_{i} Z_{i}^{\prime}\right) \mathrm{E}\left(Z_{i} Z_{i}^{\prime}\right)^{-1}$, results in an estimator, $b_{P^{*}}$, with minimal asymptotic variance.

Notice, however, that $b_{P^{*}}$ is an infeasible estimator because you do not observe P^{*}. Replace P^{*} by $\hat{P}=P^{*}+\mathrm{o}_{p}(1)$ resulting in the feasible estimator $b_{\hat{P}}$.
(i) Prove that $b_{\hat{P}}$ is consistent.
(ii) Derive the asymptotic distribution of $\sqrt{N}\left(b_{\hat{P}}-\beta\right)$.

Provide the asymptotic variance in terms of P^{*}. Then plug in the right hand side of $P^{*}:=\mathrm{E}\left(X_{i} Z_{i}^{\prime}\right) \mathrm{E}\left(Z_{i} Z_{i}^{\prime}\right)^{-1}$ and see how the result simplifies considerably.
You may assume $\mathrm{E}\left(e_{i}^{2} Z_{i} Z_{i}^{\prime}\right)=\sigma_{e}^{2} \mathrm{E}\left(Z_{i} Z_{i}^{\prime}\right)$ to make things easier.
Use the following nomenclature for brevity:

$$
C_{X Z}:=\mathrm{E}\left(X_{i} Z_{i}^{\prime}\right) \quad C_{Z X}:=\mathrm{E}\left(Z_{i} X_{i}^{\prime}\right) \quad C_{Z Z}:=\mathrm{E}\left(Z_{i} Z_{i}^{\prime}\right)
$$

This implies $C_{X Z}=C_{Z X}^{\prime}$ and $P^{*}=C_{X Z} C_{Z Z}^{-1}$.
(iii) Suggest a good \hat{P} for P^{*} such that $\hat{P}=P^{*}+\mathrm{o}_{p}(1)$.

