Advanced Econometrics I EMET4314/8014 Semester 1, 2024 Juergen Meinecke Research School of Economics ANU

Assignment 6

(due: Tuesday week 7, 11:00am)

Submission Instructions: Same as last week.

Exercises

Provide transparent derivations. Justify steps that are not obvious. Use self sufficient proofs. Make reasonable assumptions where necessary.

Let $Y_i = X'_i \beta + e_i$ with $E(e_i X_i) \neq 0$. You have available Z_i with $E(e_i Z_i) = 0$ and dim $Z_i = L \ge \dim X_i = K$. Consider the estimator

$$b_P := \left(\sum_{i=1}^N (PZ_i)X'_i\right)^{-1} \left(\sum_{i=1}^N (PZ_i)Y_i\right),$$

where dim $P = K \times L$. Different choices for the matrix P result in different estimators. For example, the simple IV estimator for the exactly identified case simply sets P = I. It can be shown that another choice, namely $P = P^* := E(X_iZ'_i)E(Z_iZ'_i)^{-1}$, results in an estimator, b_{P^*} , with minimal asymptotic variance.

Notice, however, that b_{P^*} is an *infeasible* estimator because you do not observe P^* . Replace P^* by $\hat{P} = P^* + o_p(1)$ resulting in the *feasible* estimator $b_{\hat{P}}$.

- (i) Prove that $b_{\hat{P}}$ is consistent.
- (ii) Derive the asymptotic distribution of $\sqrt{N}(b_{\hat{P}} \beta)$.

Provide the asymptotic variance in terms of P^* . Then plug in the right hand side of $P^* := E(X_i Z'_i) E(Z_i Z'_i)^{-1}$ and see how the result simplifies considerably.

You may assume $E(e_i^2 Z_i Z'_i) = \sigma_e^2 E(Z_i Z'_i)$ to make things easier.

Use the following nomenclature for brevity:

 $C_{XZ} := \mathbf{E}(X_i Z_i') \qquad \qquad C_{ZX} := \mathbf{E}(Z_i X_i') \qquad \qquad C_{ZZ} := \mathbf{E}(Z_i Z_i')$

This implies $C_{XZ} = C'_{ZX}$ and $P^* = C_{XZ}C^{-1}_{ZZ}$.

(iii) Suggest a good \hat{P} for P^* such that $\hat{P} = P^* + \mathbf{o}_p(1)$.