Advanced Econometrics I EMET4314/8014 Semester 1, 2024 Juergen Meinecke Research School of Economics ANU

Assignment 10 (due: Tuesday week 11, 11:00am)

Submission Instructions: Same as last week.

Exercise

Provide transparent derivations. Justify steps that are not obvious. Use self sufficient proofs. Make reasonable assumptions where necessary.

You have Y_1, \ldots, Y_N iid with pdf

$$f(y|\mu) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(y-\mu)^2\right).$$

Notice that this is the pdf of the normal distribution with mean μ and variance 1.

- (i) Derive the log likelihood function $\ln L(\mu)$.
- (ii) Derive $\hat{\mu}^{ML}$. Is it unbiased?
- (iii) Derive $Var(\hat{\mu}^{ML})$.
- (iv) Derive the score function $S(y|\mu)$ as it was defined during the lecture.
- (v) Derive the Fisher information $I(\mu)$ via $E(S(Y|\mu)^2)$. Suppose you have an unbiased estimator $T(Y_1, \ldots, Y_N)$ for μ , what is the Cramér Rao lower bound for its variance?
- (vi) Confirm the information equality.
- (vii) Does $\hat{\mu}^{\text{ML}}$ attain the CRB?
- (viii) If $\hat{\mu}^{ML}$ does indeed attain the CRB, then the average score function can be decomposed as suggested by the Theorem in the subsection *Minimum Variance Unbiased Estimators* of the week 10 slides. Derive that decomposition and provide $a(\mu)$.
 - (ix) State the asymptotic distribution of $\hat{\mu}^{ML}$. (No need to derive!)