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We combined the structural and first stage equations like so:
𝑌𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖

= (𝜋′𝑍𝑖 + 𝑣𝑖)′𝛽 + 𝑒𝑖

= 𝑍′
𝑖𝜆 + 𝑤𝑖,

with 𝜆 ∶= 𝜋𝛽 and 𝑤𝑖 ∶= 𝑣′
𝑖𝛽 + 𝑒𝑖

Recall the two reduced form projection coefficients

• regressing 𝑌𝑖 on 𝑍𝑖 results in 𝜆 = E(𝑍𝑖𝑍′
𝑖)−1E(𝑍𝑖𝑌𝑖)

• regressing 𝑋𝑖 on 𝑍𝑖 results in 𝜋 = E(𝑍𝑖𝑍′
𝑖)−1E(𝑍𝑖𝑋′

𝑖)

Let’s recall their dimensions

• dim 𝜆 = 𝐿 × 1
• dim 𝜋 = 𝐿 × 𝐾
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We learned that the projection coefficients 𝜆 and 𝜋 are identified
because they are explicit functions of population moments

This means we can uniquely estimate them

Practically we treat them as if they were known to us (because we
have faith in uniquely estimating them via analog principle)

In contrast, identification of 𝛽 is not so easy because 𝜆 = 𝜋𝛽
is a system of 𝐿 equations for 𝐾 unknowns

Linear algebra tells you that there

• are no solutions or infinitely many solutions if 𝐿 < 𝐾
• is hope for unique solution only if 𝐿 ≥ 𝐾

So let’s only consider 𝐿 ≥ 𝐾
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Two sub-cases here

• 𝐿 = 𝐾
then dim 𝜋 = 𝐾 × 𝐾 and if it is invertible then

𝛽 = 𝜋−1𝜆 = E(𝑍𝑖𝑋′
𝑖)−1E(𝑍𝑖𝑌𝑖)

This solution for 𝛽 motivates the IV estimator
• 𝐿 > 𝐾 then we cannot simply invert, but we can do this:

𝜋𝛽 = 𝜆 ⇔ 𝜋′𝜋𝛽 = 𝜋′𝜆
and therefore

𝛽 = (𝜋′𝜋)−1𝜋′𝜆

But (𝜋̂′𝜋̂)−1𝜋̂′𝜆̂ is not the 2SLS estimator

The 2SLS estimator has a different motivation

5 / 48



Again looking at our structural equation and plugging in the first
stage

𝑌𝑖 = 𝑋′
𝑖𝛽 + 𝑒𝑖

= (𝜋′𝑍𝑖 + 𝑣𝑖)′𝛽 + 𝑒𝑖

= 𝑍′
𝑖𝜋𝛽 + (𝑣′

𝑖𝛽 + 𝑒𝑖)
= 𝑍′

𝑖𝜋𝛽 + 𝑤𝑖

If you knew 𝜋 you could define 𝑍̃′
𝑖 = 𝑍′

𝑖𝜋 and write
𝑌𝑖 = 𝑍̃′

𝑖𝛽 + 𝑤𝑖,

where E(𝑍̃𝑖𝑤𝑖) = 0

Clearly, OLS would work fine here
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Notice that dim 𝑍̃𝑖 = dim 𝑋𝑖 = 𝐾 × 1

The corresponding matrix 𝑍̃ ∶= 𝑍𝜋 with dim 𝑍̃ = dim 𝑋 = 𝑁 × 𝐾

The OLS estimator is
̂𝛽i2SLS ∶= (𝑍̃′𝑍̃)−1 𝑍̃′𝑌

= (𝜋′𝑍′𝑍𝜋)−1 𝜋′𝑍′𝑌

This OLS estimator is infeasible because we don’t know 𝜋

But we can turn it into a feasible estimator by plugging in the
consistent estimator 𝜋̂ ∶= (𝑍′𝑍)−1𝑍′𝑋

And this is indeed what the 2SLS estimator does
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Definition (Two Stage Least Squares (2SLS) Estimator)

̂𝛽2SLS ∶= (𝜋̂′𝑍′𝑍𝜋̂)−1 𝜋̂′𝑍′𝑌

= (𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋)−1 𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑌

In summation notation:

̂𝛽2SLS = ⎡⎢
⎣
⎛⎜
⎝

𝑁
∑
𝑖=1

𝑋𝑖𝑍′
𝑖
⎞⎟
⎠

⎛⎜
⎝

𝑁
∑
𝑖=1

𝑍𝑖𝑍′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

𝑁
∑
𝑖=1

𝑍𝑖𝑋′
𝑖
⎞⎟
⎠

⎤⎥
⎦

−1

×

⎛⎜
⎝

𝑁
∑
𝑖=1

𝑋𝑖𝑍′
𝑖
⎞⎟
⎠

⎛⎜
⎝

𝑁
∑
𝑖=1

𝑍𝑖𝑍′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

𝑁
∑
𝑖=1

𝑍𝑖𝑌𝑖⎞⎟
⎠
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Three different interpretations of ̂𝛽2SLS

Recall 𝑃𝑍 ∶= 𝑍(𝑍′𝑍)−1𝑍′ is the symmetric and idempotent
projection matrix

Then 𝑋̂ ∶= 𝑃𝑍𝑋 is the projection of 𝑋 on 𝑍

It follows
̂𝛽2SLS = (𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋)−1 𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑌

= (𝑋′𝑃𝑍𝑋)−1 𝑋′𝑃𝑍𝑌 (1)

= ((𝑃𝑍𝑋)′𝑋)−1 (𝑃𝑍𝑋)′𝑌

= (𝑋̂′𝑋)−1 𝑋̂′𝑌 (2)

= (𝑋′𝑃𝑍𝑃𝑍𝑋)−1 𝑋′𝑃𝑍𝑌

= ((𝑃𝑍𝑋)′(𝑃𝑍𝑋))−1 (𝑃𝑍𝑋)′𝑌

= (𝑋̂′𝑋̂)−1 𝑋̂′𝑌 (3)
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Equation (1) is the most common matrix representation of ̂𝛽2SLS in
textbooks and lecture notes

Equation (2) presents the 2SLS estimator as an IV estimator, it has
the same structure as ̂𝛽IV with 𝑋̂ used in place of 𝑍

Equation (3) presents the 2SLS estimator as an OLS estimator of 𝑌 on
𝑋̂

The third interpretation justifies label ‘two stage least squares’:

(1) regress 𝑋 on 𝑍, obtain 𝜋̂ = (𝑍′𝑍)−1𝑍′𝑋 and 𝑋̂ = 𝑍𝜋̂ = 𝑃𝑍𝑋
(2) regress 𝑌 on 𝑋̂ and obtain ̂𝛽2SLS = (𝑋̂′𝑋̂)−1𝑋̂′𝑌
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Proposition (Consistency of ̂𝛽2SLS)
̂𝛽2SLS = 𝛽 + o𝑝(1).

Some definitions needed for asymptotic variance:
Let 𝐶𝑋𝑍 = E(𝑋𝑖𝑍′

𝑖), and 𝐶𝑍𝑍 = E(𝑍𝑖𝑍′
𝑖), and 𝐶𝑍𝑋 = E(𝑍𝑖𝑋′

𝑖).

Proposition (Asymptotic Distribution of ̂𝛽2SLS)

√𝑁( ̂𝛽2SLS − 𝛽) d→ N(0, Ω)

where
Ω = (𝐶𝑋𝑍𝐶−1

𝑍𝑍𝐶𝑍𝑋)−1𝐶𝑋𝑍𝐶−1
𝑍𝑍E(𝑒2

𝑖 𝑍𝑖𝑍′
𝑖)𝐶−1

𝑍𝑍𝐶𝑍𝑋(𝐶𝑋𝑍𝐶−1
𝑍𝑍𝐶𝑍𝑋)−1

Corollary
Under homoskedasticity, Ω = 𝜎2

𝑒 (𝐶𝑋𝑍𝐶−1
𝑍𝑍𝐶𝑍𝑋)−1.
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Consistent estimators for the asymptotic covariances are readily
obtained by using the analogy principle

So replace population moments by sample moments, because
𝑁

∑
𝑖=1

𝑋𝑖𝑍′
𝑖/𝑁 = 𝐶𝑋𝑍 + o𝑝(1)

𝑁
∑
𝑖=1

𝑍𝑖𝑍′
𝑖/𝑁 = 𝐶𝑍𝑍 + o𝑝(1)

𝑁
∑
𝑖=1

𝑍𝑖𝑋′
𝑖/𝑁 = 𝐶𝑍𝑋 + o𝑝(1)

𝑁
∑
𝑖=1

𝑍𝑖𝑍′
𝑖 ̂𝑒2

𝑖 /𝑁 = E(𝑍𝑖𝑍′
𝑖𝑒2

𝑖 ) + o𝑝(1)

where ̂𝑒𝑖 ∶= 𝑌𝑖 − 𝑋′
𝑖

̂𝛽2SLS

The resulting covariance matrix estimator will be consistent
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What is the expected value of ̂𝛽2SLS?

It’s quite complicated to work this out

There exists a somewhat sobering result that offers some guidance

Lemma (Existence of Moments of 2SLS (Kinal))
Let (𝑋, 𝑌, 𝑍) be jointly normal. The 𝑟-th moment of ̂𝛽2SLS only exists
for integers 𝑟 < 𝐿2 − 𝐾2 + 1.

To obtain this result, Kinal had to impose the strong restriction of
normality (which is almost certainly far from the truth)

Applying this to a common case in practice:
𝐾2 = 𝐿2 = 1 ⇒ no expected value

Only over-identified models can hope to have E( ̂𝛽2SLS) < ∞
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Although the 2SLS estimator is consistent, it is biased

Where does this bias come from?

Recall the infeasible 2SLS estimator:
̂𝛽i2SLS = (𝜋′𝑍′𝑍𝜋)−1 𝜋′𝑍′𝑌

We can’t use i2SLS because we don’t know 𝜋

Brainwave: use 𝜋̂ instead, and obtain
̂𝛽2SLS = (𝜋̂′𝑍′𝑍𝜋̂)−1 𝜋̂′𝑍′𝑌

Seems like a good analogy principle solution, however using 𝜋̂ in
place of 𝜋 is the source of the bias of 2SLS
(even though 𝜋̂ is a trusty and consistent estimator for 𝜋)

Usually we don’t make a big deal if an estimator has a little bias,
but the bias in the 2SLS setting can get out of control quickly

Let’s investigate
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Let’s look at a toy model
𝑌𝑖 = 𝑋𝑖𝛽 + 𝑒𝑖

𝑋𝑖 = 𝑍′
𝑖𝜋 + 𝑣𝑖,

where 𝑋𝑖 is a scalar and dim 𝑍𝑖 = 𝐿 ≥ 1

Let (𝑒𝑖, 𝑣𝑖) ∼ N(0, Σ)
(that is, we assume an exact bivariate normal distribution)

2SLS estimation makes sense here because E(𝑒𝑖𝑋𝑖) ≠ 0

To make life easier, let’s pretend that

• 𝑍𝑖

• Θ̂ = ∑𝑁
𝑖=1 𝑍𝑖𝑍′

𝑖/𝑁

are non-stochastic (we treat them as constants)

We work with a simple toy model and make many simplifying
assumptions (otherwise the math becomes even more tedious)
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Let’s start by showing that infeasible 2SLS is unbiased

Recall
̂𝛽i2SLS =

𝜋′𝑍′𝑌
𝜋′𝑍′𝑍𝜋

Therefore

√𝑁 ( ̂𝛽i2SLS − 𝛽) =

1
√𝑁

𝜋′𝑍′𝑒

1
𝑁𝜋′𝑍′𝑍𝜋

Let’s take a closer look at the numerator

For our toy model we can obtain an exact distribution:

1
√𝑁

𝜋′𝑍′𝑒 ∼ N(0, 𝜎2
𝑒

𝑁 𝜋′𝑍′𝑍𝜋) = N (0, 𝜎2
𝑒 𝜋′Θ̂𝜋)

Therefore, infeasible 2SLS is unbiased
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For 2SLS things are not so simple

In the scalar case, by definition:
̂𝛽2SLS =

𝜋̂′𝑍′𝑌
𝜋̂′𝑍′𝑍𝜋̂ =

𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑌
𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋

Rearranging results in

√𝑁 ( ̂𝛽2SLS − 𝛽) =

1
√𝑁

𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑒

1
𝑁𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋

Both numerator and denominator are more complicated than for the
infeasible case

Let’s dissect them
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We will make the following substitution: given 𝑋 = 𝑍𝜋 + 𝑣

• 𝑍′𝑋 = 𝑍′𝑍𝜋 + 𝑍′𝑣
• 𝑋′𝑍 = 𝜋′𝑍′𝑍 + 𝑣′𝑍

Turning first to the numerator

1
√𝑁

𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑒 = 1
√𝑁

𝜋′𝑍′𝑒 + 1
√𝑁

𝑣′𝑃𝑍𝑒

= 1
√𝑁

𝜋′𝑍′𝑒 + 1
√𝑁

𝜎𝑒𝑣
𝜎2

𝑣
𝑣′𝑃𝑍𝑣 + 1

√𝑁
𝑣′𝑃𝑍𝑤

where I use the projection 𝑒𝑖 = 𝜎𝑒𝑣
𝜎2

𝑣
𝑣𝑖 + 𝑤𝑖 with E(𝑣𝑖𝑤𝑖) = 0

Because both 𝑒𝑖 and 𝑣𝑖 are normal, it follows that 𝑤𝑖 is normal

Moreover, for the normal distribution the zero covariance E(𝑣𝑖𝑤𝑖) = 0
implies that 𝑣𝑖 and 𝑤𝑖 are statistically independent
(that’s a special feature of the normal distribution)

For infeasible 2SLS the numerator only consisted of 1
√𝑁

𝜋′𝑍′𝑒
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Copy and paste from previous slide:
1

√𝑁
𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑒 = 1

√𝑁
𝜋′𝑍′𝑒 + 1

√𝑁

𝜎𝑒𝑣
𝜎2

𝑣
𝑣′𝑃𝑍𝑣 + 1

√𝑁
𝑣′𝑃𝑍𝑤

Looking at first two terms:
1

√𝑁
𝜋′𝑍′𝑒 ∼ N(0, 𝜎2

𝑒
𝑁 𝜋′𝑍′𝑍𝜋) = N (0, 𝜎2

𝑒 𝜋′Θ̂𝜋)

1
√𝑁

𝜎𝑒𝑣
𝜎2

𝑣
𝑣′𝑃𝑍𝑣 = 1

√𝑁
𝜎𝑒𝑣

𝑣′

𝜎𝑣
𝑃𝑍

𝑣
𝜎𝑣

∼ 1
√𝑁

𝜎𝑒𝑣𝜒2(tr 𝑃𝑍) ∼ 1
√𝑁

𝜎𝑒𝑣𝜒2(𝐿)

Notice that 𝑣
𝜎𝑣

∼ 𝑁(0, 𝐼𝑁), then using the lemma
if 𝑃 ∼ N(0, 𝐼𝑁) then 𝑃′𝑄𝑃 ∼ 𝜒2(tr (𝑄))

Having worked out the distributions of these two terms, we can
consider their expected values

Using E(𝜒2(𝐿)) = 𝐿, it follows that
E( 1

√𝑁
𝜋′𝑍′𝑒) = 0

E( 1
√𝑁

𝜎𝑒𝑣
𝜎2

𝑣
𝑣′𝑃𝑍𝑣) = 1

√𝑁
𝐿𝜎𝑒𝑣
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What’s the expected value of the third term?

E( 1
√𝑁

𝑣′𝑃𝑍𝑤) = 1
√𝑁
E(𝑣′)𝑃𝑍E(𝑤) = 0

Why? Because 𝑣 and 𝑤 are independent rvs with zero mean

It follows, for the entire numerator:

E( 1
√𝑁

𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑒) = 1
√𝑁

𝐿𝜎𝑒𝑣

Ideally, this should be zero
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Recall our earlier substitutions

• 𝑍′𝑋 = 𝑍′𝑍𝜋 + 𝑍′𝑣
• 𝑋′𝑍 = 𝜋′𝑍′𝑍 + 𝑣′𝑍

Now applying to the denominator:
1
𝑁𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋 = 1

𝑁𝜋′𝑍′𝑍𝜋 + 2
𝑁𝜋′𝑍′𝑣 + 1

𝑁𝑣′𝑍(𝑍′𝑍)−1𝑍′𝑣

Looking at the individual terms
1
𝑁𝜋′𝑍′𝑍𝜋 = 𝜋′Θ̂𝜋 = 𝑂(1)

2
𝑁𝜋′𝑍′𝑣 ∼ N(0, 4𝜎2

𝑣
𝑁2 𝜋′𝑍′𝑍𝜋) = N(0, 4𝜎2

𝑣
𝑁 𝜋′Θ̂𝜋) = 2

√𝑁
N (0, 𝜎2

𝑣 𝜋′Θ̂𝜋)

= 2
√𝑁
O𝑝(1) = O𝑝 ( 1

√𝑁
)

1
𝑁𝑣′𝑃𝑍𝑣 ∼ 1

𝑁𝜎2
𝑣 𝜒2(𝐿) = 1

𝑁O𝑝(1) = O𝑝 ( 1
𝑁)

Bottom line: a decent approximation for the denominator is
1
𝑁𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋 ≈ 𝜋′Θ̂𝜋
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Putting things together and applying an asymptotic approximation
from Hahn and Hausman (2005)

For small 𝑟, they use: 1
𝜋′Θ̂𝜋+𝑟

≈ 1
𝜋′Θ̂𝜋

Then

√𝑁( ̂𝛽2SLS − 𝛽) ≈

1
√𝑁

𝜋′𝑍′𝑒 + 1
√𝑁

𝑣′𝑃𝑍𝑒

𝜋′Θ̂𝜋

Big picture: We want the study the expected value of ̂𝛽2SLS

We have done all the hard work, now we can derive the expected
value of the rhs

E(√𝑁( ̂𝛽2SLS − 𝛽)) ≈ E
⎛⎜⎜⎜⎜
⎝

1
√𝑁

𝜋′𝑍′𝑒 + 1
√𝑁

𝑣′𝑃𝑍𝑒

𝜋′Θ̂𝜋
⎞⎟⎟⎟⎟
⎠

=
1

√𝑁

𝐿
𝜋′Θ̂𝜋

𝜎𝑒𝑣
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We have successfully approximated the bias of the 2SLS estimator:

E ( ̂𝛽2SLS − 𝛽) ≈
1
𝑁

𝐿
𝜋′Θ̂𝜋

𝜎𝑒𝑣 ≈
1
𝑁

𝐿
𝜋′Θ𝜋𝜎𝑒𝑣,

where Θ = E(𝑍𝑖𝑍′
𝑖)

This is the result from Hahn and Hausman (2005)

Let’s get a ‘feeling’ for what’s going on

Following Hahn and Hausman, we make further simplifications and
recall a few basic concepts

Recall that earlier (𝑒𝑖, 𝑣𝑖) ∼ N(0, Σ)

Now, Σ = ⎛⎜
⎝

1 𝜌
𝜌 1

⎞⎟
⎠

(this amounts to a normalization that is wlog)

Notice that this implies 𝜎𝑒𝑣 = 𝜌
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Do you remember 𝑅2 from undergrad metrics? Refresher!

Given the reduced form 𝑋𝑖 = 𝑍′
𝑖𝜋 + 𝑣𝑖, define

TSS ∶= 𝜎2
𝑥

ESS ∶= Var (𝑍′
𝑖𝜋) = 𝜋′Θ𝜋

RSS ∶= 𝜎2
𝑣 = 1

(these are the definitions based on the population moments)

Recall from undergrad that 𝑅2 ∶= ESS/TSS
(the proportion of the variance of 𝑋𝑖 that is explained by 𝑍𝑖)

Algebraic facts: 𝑅2 = 1−RSS
TSS , or equivalently TSS = RSS

1−𝑅2

It follows that TSS = 1/(1 − 𝑅2)

Lastly, let 𝐹 ∶= 𝑁 ⋅ 𝑅2/(1 − 𝑅2)
(proportion of the variance of 𝑋𝑖 that is explained by 𝑍𝑖
divided by
proportion of the variance of 𝑋𝑖 that is explained by 𝑣𝑖)

Let’s fiddle around with our bias formula
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We get the following results for the 2SLS bias

E ( ̂𝛽2SLS − 𝛽) ≈
1
𝑁

𝐿 ⋅ 𝜎𝑒𝑣
𝜋′Θ𝜋

=
1
𝑁

𝐿 ⋅ 𝜌
𝜋′Θ𝜋

=
1
𝑁

𝐿 ⋅ 𝜌
ESS (1)

=
1
𝑁

𝐿 ⋅ 𝜌
𝑅2 ⋅ TSS

=
1
𝑁

𝐿 ⋅ 𝜌 ⋅ (1 − 𝑅2)
𝑅2 (2)

=
𝐿 ⋅ 𝜌

𝐹 (3)

Let’s interpret these
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In each case, suppose that 𝜌 is nonzero, implying that there is
indeed endogeneity present

The three equations illustrate ways in which the bias could blow up

They all concern the first stage regression of 𝑋𝑖 on 𝑍𝑖

Bias could blow up if

1. ESS ≈ 0
2. 𝑅2 ≈ 0
3. first stage 𝐹 statistic is zero

These are all equivalent ways of saying:
the instruments don’t explain the endogenous variable well enough

Of course, asymptotically, the bias is zero

But the problem that we point out here confronts researchers who,
in practice, deal with finite samples

We will pursue this further, both analytically and computationally
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Consider the simple scalar model
𝑌𝑖 = 𝑋𝑖𝛽 + 𝑒𝑖

𝑋𝑖 = 𝑍𝑖𝜋 + 𝑣𝑖

In other words: 𝐾1 = 0, 𝐾2 = 𝐿2 = 𝐿 = 1

Let’s make life easy: E𝑍𝑖 = 0 and E𝑍2
𝑖 = 1

Then 𝜋 = Cov(𝑋𝑖, 𝑍𝑖)/Var (𝑍𝑖) = E(𝑋𝑖𝑍𝑖)/E(𝑍2
𝑖 ) = E(𝑋𝑖𝑍𝑖)

What happens when E(𝑋𝑖𝑍𝑖) = 0 so that 𝜋 = 0?

In that case, the first stage equation simplifies to 𝑋𝑖 = 𝑣𝑖

Let’s label this case invalid instrument

Using 𝑍𝑖 as an IV doesn’t make sense because it isn’t one
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Let’s further assume, for simplicity,

Var ⎛⎜
⎝

⎛⎜
⎝

𝑒𝑖
𝑣𝑖

⎞⎟
⎠

|𝑍𝑖
⎞⎟
⎠

= ⎛⎜
⎝

1 𝜌
𝜌 1

⎞⎟
⎠

Endogeneity, of course, implies 𝜌 ≠ 0

Let’s say, you recognize that 𝑍𝑖 isn’t really an IV and you decide to
resort to OLS instead

̂𝛽OLS − 𝛽 =
∑𝑁

𝑖=1 𝑋𝑖𝑒𝑖

∑𝑁
𝑖=1 𝑋2

𝑖

=
𝑁−1 ∑𝑁

𝑖=1 𝑣𝑖𝑒𝑖

𝑁−1 ∑𝑁
𝑖=1 𝑣2

𝑖

p→
E(𝑣𝑖𝑒𝑖)
E(𝑣2

𝑖 )
= 𝜌 ≠ 0

So ̂𝛽OLS is not consistent, which we knew already

Can the instrument help, although it is invalid?

And if it doesn’t help, could the instrument do any harm?
(spoiler alert: Yes!)
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̂𝛽IV − 𝛽 =
𝑁−1 ∑𝑁

𝑖=1 𝑍𝑖𝑒𝑖

𝑁−1 ∑𝑁
𝑖=1 𝑋𝑖𝑍𝑖

p→
E(𝑍𝑖𝑒𝑖)
E(𝑋𝑖𝑍𝑖)

=
0
0 ,

which is indeterminate

Notice that
1

√𝑁

𝑁
∑
𝑖=1

⎛⎜
⎝

𝑍𝑖𝑒𝑖
𝑍𝑖𝑣𝑖

⎞⎟
⎠

d→ ⎛⎜
⎝

𝜉1
𝜉2

⎞⎟
⎠

∼ N⎛⎜
⎝

0, ⎛⎜
⎝

1 𝜌
𝜌 1

⎞⎟
⎠

⎞⎟
⎠

Notice that Var (𝑍𝑖𝑒𝑖) = E(𝑍2
𝑖 𝑒2

𝑖 ) = E(𝑍2
𝑖 E(𝑒2

𝑖 |𝑍𝑖)) = 1
(and similarly for Var (𝑍𝑖𝑣𝑖))

Here Cov(𝜉1, 𝜉2) = E(𝜉1𝜉2) = 𝜌

Then define 𝜉0 ∶= 𝜉1 − 𝜌𝜉2

This makes Cov(𝜉0, 𝜉2) = E(𝜉0𝜉2) = 0,
meaning 𝜉0 and 𝜉2 are independent
(joint normal and zero covariance implies independence)
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Let’s take another look now, plugging in 𝜉1 = 𝜉0 + 𝜌𝜉2:

̂𝛽IV − 𝛽 =

1
√𝑁

∑𝑁
𝑖=1 𝑍𝑖𝑒𝑖

1
√𝑁

∑𝑁
𝑖=1 𝑋𝑖𝑍𝑖

d→
𝜉1
𝜉2

= 𝜌 +
𝜉0
𝜉2

(and applying the continuous mapping theorem: the limiting
distribution of the ratio is the ratio of the limiting distributions)

The ratio of two independently normally distributed rvs with zero
mean results in a Cauchy distributed random variable that is
centered at zero

The Cauchy distribution is nasty
• although it is centered at zero it has infinite mean
• its median is zero
• it has thick tails (outliers)
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We’ve learned that using ̂𝛽IV when 𝑍𝑖 isn’t a valid IV results in an
estimator ̂𝛽IV that

• does not converge in probability
• instead converges to a Cauchy distribution
• has a median of 𝛽 + 𝜌

Let’s say, you ignore all that and use an IV based 𝑡 test anyway

What will happen?
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What happens to the ̂𝛽IV-based 𝑡 statistic under invalid instruments?

Recall the generic 𝑡 statistic that is based on an estimator ̂𝛽:

𝑡 ̂𝛽(𝛽) =
̂𝛽 − 𝛽

se( ̂𝛽)

Let’s make our lives easy and consider the standard error of ̂𝛽IV

under homoskedasticity

The estimator of the asymptotic variance for ̂𝛽IV is

Var ( ̂𝛽IV|𝑍𝑖) = 𝜎̂2
𝑒

∑𝑁
𝑖=1 𝑍2

𝑖

(∑𝑁
𝑖=1 𝑋𝑖𝑍𝑖)2

therefore

se( ̂𝛽IV) =
√𝜎̂2

𝑒 ∑𝑁
𝑖=1 𝑍2

𝑖

∑𝑁
𝑖=1 𝑋𝑖𝑍𝑖
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Notice

𝜎̂2
𝑒 = 𝑁−1

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑋𝑖 ̂𝛽IV)2 = 𝑁−1
𝑁

∑
𝑖=1

(𝑋𝑖(𝛽 − ̂𝛽IV) + 𝑒𝑖)
2

= ⎛⎜
⎝

𝑁
∑
𝑖=1

𝑒2
𝑖 /𝑁⎞⎟

⎠
− 2( ̂𝛽IV − 𝛽) ⎛⎜

⎝

𝑁
∑
𝑖=1

𝑋𝑖𝑒𝑖/𝑁⎞⎟
⎠

+ ( ̂𝛽IV − 𝛽)2 ⎛⎜
⎝

𝑁
∑
𝑖=1

𝑋2
𝑖 /𝑁⎞⎟

⎠

d→ 1 − 2𝜌
𝜉1
𝜉2

+ (
𝜉1
𝜉2

)
2

It follows for the standard error (using con’t mapping theorem):

se( ̂𝛽IV) =
√𝜎̂2

𝑒 ∑𝑁
𝑖=1 𝑍2

𝑖

∑𝑁
𝑖=1 𝑋𝑖𝑍𝑖

=
√𝜎̂2

𝑒
1
𝑁 ∑𝑁

𝑖=1 𝑍2
𝑖

1
√𝑁

∑𝑁
𝑖=1 𝑋𝑖𝑍𝑖

d→
√1 − 2𝜌 𝜉1

𝜉2
+ ( 𝜉1

𝜉2
)

2

𝜉2

And for the 𝑡 statistics:

𝑡 ̂𝛽IV(𝛽) =
̂𝛽IV − 𝛽

se( ̂𝛽IV)
d→

𝜉1/𝜉2

√1−2𝜌 𝜉1
𝜉2

+( 𝜉1
𝜉2

)
2

𝜉2

=
𝜉1

√1 − 2𝜌 𝜉1
𝜉2

+ ( 𝜉1
𝜉2

)
2

(Note: the numerator is slightly different from Hansen) 36 / 48



Copy and paste last line from previous slide:

𝑡 ̂𝛽IV(𝛽) d→
𝜉1

√1 − 2𝜌 𝜉1
𝜉2

+ ( 𝜉1
𝜉2

)
2

=∶ 𝑆(𝜌)

What does this mean?

The 𝑡 statistic does NOT converge to a normal distribution

So we can’t simply compare it to the ±1.96 cutoffs

The asymptotic distribution of 𝑡 depends on 𝜌, a parameter that we
don’t know and cannot estimate

• 𝜌 is the degree of endogeneity

To get more intuition about what’s going on, let’s send 𝜌 to 1 which is
the worst possible case of endogeneity
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The closer 𝜌 → 1, the more 𝜉1 and 𝜉2 will resemble each other

Weird things will happen in the limit case as 𝜌 → 1:

• 𝜉1
p→ 𝜉2

• 𝜎̂2
𝑒

p→ 0
• se( ̂𝛽IV) p→ 0
• 𝑆(𝜌) → ∞
• and ultimately the 𝑡 statistic converges in probability to ∞

That can’t be good

It means, that you are mechanically rejecting 𝐻0 irrespective of the
true value of 𝛽

Hansen puts it nicely in his book:
…users may incorrectly interpret estimates as precise, despite the
fact that they are useless.
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Put slightly differently:
• the 𝑡 statistic based on ̂𝛽IV when instruments are invalid is
deceivingly optimistic

• it tends to be large suggesting a nonzero coefficient
• irrespective of the true value of 𝛽
• the large 𝑡 statistic is merely an artifact of the breakdown of the
asymptotic normal distribution

In the case 𝜋 = 0, perhaps better to use OLS instead of IV?

Problem: in applications you don’t usually know that 𝜋 = 0

Anyway, maybe the case 𝜋 = 0 is too extreme and produces
problems that are too dramatic

Let’s study a case that is less extreme and therefore, maybe, less
dramatic: 𝜋 ≠ 0 but 𝜋 ≈ 0 (so-called weak instruments)

39 / 48



Roadmap

Instrumental Variables Estimation

Two Stage Least Squares (2SLS) Estimator

Large Sample Properties of 2SLS Estimator

Bias of 2SLS Estimator

Invalid Instruments

Weak Instruments

40 / 48



We have seen that 𝜋 = 0 (invalid instruments) leads to a breakdown
of statistical inference for the IV estimator

Now let’s look at: 𝜋 ≠ 0 but 𝜋 ≈ 0

What I’m trying to say here:
𝜋 is not equal to zero but it is close to zero or local to zero

We will use the same setup as in the invalid instrument case
(one endogenous regressor and one instrument)

Technically, local to zero is generated by letting 𝜋 = 𝑁−1/2𝜏 where
𝜏 ≠ 0

Where does this come from? You could guess that, once you plug
this into an asymptotic expansion, it delivers a useful rate of
convergence
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Reminder of the setup
𝑌𝑖 = 𝑋𝑖𝛽 + 𝑒𝑖

𝑋𝑖 = 𝑍𝑖𝜋 + 𝑣𝑖

In other words: 𝐾1 = 0, 𝐾2 = 𝐿2 = 𝐿 = 1

We still assume that E𝑍𝑖 = 0 and E𝑍2
𝑖 = 1

Recall that 𝜋 = E(𝑋𝑖𝑍𝑖)/E(𝑍2
𝑖 ) = E(𝑋𝑖𝑍𝑖)

What happens when E(𝑋𝑖𝑍𝑖) ≈ 0 so that 𝜋 ≈ 0?

Let’s label this case weak instrument

To make life easy, let’s assume

Var ⎛⎜
⎝

⎛⎜
⎝

𝑒𝑖
𝑣𝑖

⎞⎟
⎠

|𝑍𝑖
⎞⎟
⎠

= ⎛⎜
⎝

1 𝜌
𝜌 1

⎞⎟
⎠

Endogeneity, of course, implies 𝜌 ≠ 0
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Let’s again first look at the OLS estimator

̂𝛽OLS − 𝛽 =
∑𝑁

𝑖=1 𝑋𝑖𝑒𝑖

∑𝑁
𝑖=1 𝑋2

𝑖

=
𝑁−1 ∑𝑁

𝑖=1(𝑁−1/2𝜏𝑍𝑖 + 𝑣𝑖)𝑒𝑖

𝑁−1 ∑𝑁
𝑖=1(𝑁−1/2𝜏𝑍𝑖 + 𝑣𝑖)2

p→
E(𝑣𝑖𝑒𝑖)
E(𝑣2

𝑖 )
= 𝜌 ≠ 0

which is the same as before when 𝜋 = 0

Let’s turn to the IV estimator, remember

̂𝛽IV − 𝛽 =
∑𝑁

𝑖=1 𝑍𝑖𝑒𝑖

∑𝑁
𝑖=1 𝑍𝑖𝑋𝑖
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We start by looking at
1

√𝑁

𝑁
∑
𝑖=1

𝑍𝑖𝑋𝑖 =
1

√𝑁

𝑁
∑
𝑖=1

𝑍2
𝑖 𝜋 +

1
√𝑁

𝑁
∑
𝑖=1

𝑍𝑖𝑣𝑖

=
1
𝑁

𝑁
∑
𝑖=1

𝑍2
𝑖 𝜏 +

1
√𝑁

𝑁
∑
𝑖=1

𝑍𝑖𝑣𝑖

d→ 𝜏 + 𝜉2

and recall

1
√𝑁

𝑁
∑
𝑖=1

⎛⎜
⎝

𝑍𝑖𝑒𝑖
𝑍𝑖𝑣𝑖

⎞⎟
⎠

d→ ⎛⎜
⎝

𝜉1
𝜉2

⎞⎟
⎠

∼ N⎛⎜
⎝

0, ⎛⎜
⎝

1 𝜌
𝜌 1

⎞⎟
⎠

⎞⎟
⎠

, therefore

̂𝛽IV − 𝛽 =

1
√𝑁

∑𝑁
𝑖=1 𝑍𝑖𝑒𝑖

1
√𝑁

∑𝑁
𝑖=1 𝑍𝑖𝑋𝑖

d→
𝜉1

𝜏 + 𝜉2

Again: ̂𝛽IV is inconsistent with non-normal asymptotic distribution
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What happens to the 𝑡 test based on ̂𝛽IV under weak identification?

Recall the generic 𝑡 statistic that is based on an estimator ̂𝛽:

𝑡 ̂𝛽(𝛽) =
̂𝛽 − 𝛽

se( ̂𝛽)

Let’s make our lives easy and consider the standard error of ̂𝛽IV

under homoskedasticity

The estimator of the asymptotic variance for ̂𝛽IV is

Var ( ̂𝛽IV|𝑍𝑖) = 𝜎̂2
𝑒

∑𝑁
𝑖=1 𝑍2

𝑖

(∑𝑁
𝑖=1 𝑋𝑖𝑍𝑖)2

therefore

se( ̂𝛽IV) = 𝜎̂𝑒

√∑𝑁
𝑖=1 𝑍2

𝑖

∑𝑁
𝑖=1 𝑋𝑖𝑍𝑖
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Notice

𝜎̂2
𝑒 = 𝑁−1

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑋𝑖 ̂𝛽IV)2 = 𝑁−1
𝑁

∑
𝑖=1

(𝑋𝑖(𝛽 − ̂𝛽IV) + 𝑒𝑖)
2

= ⎛⎜
⎝

𝑁
∑
𝑖=1

𝑒2
𝑖 /𝑁⎞⎟

⎠
− 2( ̂𝛽IV − 𝛽) ⎛⎜

⎝

𝑁
∑
𝑖=1

𝑋𝑖𝑒𝑖/𝑁⎞⎟
⎠

+ ( ̂𝛽IV − 𝛽)2 ⎛⎜
⎝

𝑁
∑
𝑖=1

𝑋2
𝑖 /𝑁⎞⎟

⎠

d→ 1 − 2𝜌
𝜉1

𝜏 + 𝜉2
+ (

𝜉1
𝜏 + 𝜉2

)
2

It follows that

se( ̂𝛽IV) =
√𝜎̂2

𝑒 ∑𝑁
𝑖=1 𝑍2

𝑖

∑𝑁
𝑖=1 𝑋𝑖𝑍𝑖

=
√𝜎̂2

𝑒
1
𝑁 ∑𝑁

𝑖=1 𝑍2
𝑖

1
√𝑁

∑𝑁
𝑖=1 𝑋𝑖𝑍𝑖

d→
√1 − 2𝜌 𝜉1

𝜏+𝜉2
+ ( 𝜉1

𝜏+𝜉2
)

2

𝜏 + 𝜉2

And for the 𝑡 statistic:

𝑡 ̂𝛽IV(𝛽) =
̂𝛽IV − 𝛽

se( ̂𝛽IV)
d→

𝜉1/(𝜏 + 𝜉2)

√1−2𝜌 𝜉1
𝜏+𝜉2

+( 𝜉1
𝜏+𝜉2

)
2

𝜏+𝜉2

=
𝜉1

√1 − 2𝜌 𝜉1
𝜏+𝜉2

+ ( 𝜉1
𝜏+𝜉2

)
2
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Copy and paste last line from previous slide:

𝑡 ̂𝛽IV(𝛽) d→
𝜉1

√1 − 2𝜌 𝜉1
𝜏+𝜉2

+ ( 𝜉1
𝜏+𝜉2

)
2

=∶ 𝑆(𝜌, 𝜏)

What does this mean?

The 𝑡 statistic does NOT converge to a normal distribution

So we can’t simply compare it to the ±1.96 cutoffs

The asymptotic distribution of 𝑡 depends on 𝜌 and 𝜏, two parameters
that we don’t know and cannot estimate

• 𝜌 is the degree of endogeneity
• 𝜏 is the strength of the instrument

To get more intuition about what’s going on, let’s set 𝜌 = 1 which is
the worst possible case of endogeneity
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Then 𝜉1 = 𝜉2 and the 𝑡 statistic collapses to

𝑆(1, 𝜏) = 𝜉1 +
𝜉2

1
𝜏 ,

Recall that 𝜉1 ∼ N(0, 1) and 𝜉2
1 ∼ 𝜒2

1

So 𝑆(1, 𝜏) is a mixture of a N(0, 1) and a 𝜒2
1 distribution

The degree of the mixture is controlled by the value of 𝜏

• if 𝜏 is very large, then 𝑆(1, 𝜏) will be close to N(0, 1)
(strong instrument case)

• if 𝜏 is very small, then the 𝜒2
1 dominates and distorts away from

normality (weak instrument case)
• in the extreme we get lim𝜏→0 𝑆(1, 𝜏) = ∞
(that’s a terrible result: very weak instruments will yield
misleadingly large 𝑡 statistics suggesting significant 𝛽 regardless
of the truth)

48 / 48


	Instrumental Variables Estimation
	Two Stage Least Squares (2SLS) Estimator
	Large Sample Properties of 2SLS Estimator
	Bias of 2SLS Estimator
	Invalid Instruments
	Weak Instruments


