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Instrumental Variables Estimation

Two Stage Least Squares (2SLS) Estimator



We combined the structural and first stage equations like so:
Yi = X;ﬁ + ez'
= (7T/Zl' + Ui)/ﬁ + ei
= Z;/\ + w;,
with A := B and w; := v;B + ¢;
Recall the two reduced form projection coefficients
- regressing Y; on Z; results in A =E(Z,Z)EZYy)
- regressing X; on Z; results in T = E(Zizg)‘lE(Zinf)
Let’s recall their dimensions
- dimA =Lx1
- dimm =LxK



We learned that the projection coefficients A and 7t are identified
because they are explicit functions of population moments

This means we can uniquely estimate them

Practically we treat them as if they were known to us (because we
have faith in uniquely estimating them via analog principle)

In contrast, identification of B is not so easy because A = 718
is a system of L equations for K unknowns

Linear algebra tells you that there

- are no solutions or infinitely many solutions if L < K

- is hope for unique solution only if L > K

So let’s only consider L > K



Two sub-cases here

=K
then dim 7t = K x K and if it is invertible then
B=mn"tA=EZX)EZY))

This solution for B motivates the IV estimator
- L > K then we cannot simply invert, but we can do this:
nB=A o nnp=nA
and therefore
B=(t'm)In'A
But (2'7)~17’A is not the 2SLS estimator

The 2SLS estimator has a different motivation



Again looking at our structural equation and plugging in the first
stage
Yi = Xl’ﬁ + ei
= (7T’Z1-+Ul-)'[3+ei
=ZiB+ (v;B +e;)
= Z;-T[,B-I—wi
If you knew 7z you could define Z; = Zirr and write
Yi = Z;,B + w,-,
where E(Z;w;) =0

Clearly, OLS would work fine here



Notice that dimZ; = dim X; = K x 1
The corresponding matrix Z := Zmr with dimZ = dim X = N xK

The OLS estimator is1
gss .= (272)" 2y
= (7t’Z’Z7r)_1 n'Z'Y

This OLS estimator is infeasible because we don’t know 7

But we can turn it into a feasible estimator by plugging in the
consistent estimator 7 := (2'Z)"1Z'X

And this is indeed what the 2SLS estimator does



Definition (Two Stage Least Squares (2SLS) Estimator)
BB = (R Z'ZR) T R'Z'Y
= (X'ZZ'2)712X) " X' Z(Z' )7\ Z2'Y

In summation notation:
N -1
(2%)

BZSLS — [(gxizg) (gzizg) i:j
(;‘ XZ-Z}> (; ziz;> (Z Z,-Yi)

i=1




Three different interpretations of 255

Recall P, := Z(Z'Z)~1Z' is the symmetric and idempotent
projection matrix

Then X := P, X is the projection of X on Z

It follows
BSS = (X'Z(Z )1 Z'X) " X'Z(Z'2)71Z'Y
= (X'P,X)"' X'P,Y (1)
= ((PzX)'X) ™ (PzX)'Y
= (XX)7 XY @)

= (X'P,P,X)"' X'P,Y
= ((PzX)' (PzX)) ™" (PzX)'Y
= (XR)7'Y (3)



Fquation (1) is the most common matrix representation of g in
textbooks and lecture notes

Equation (2) presents the 2SLS estimator as an IV estimator, it has
the same structure as A" with X used in place of Z

Equation (3) presents the 2SLS estimator as an OLS estimator of Y on
X

The third interpretation justifies label ‘two stage least squares”
(1) regress X on Z, obtain & = (Z'Z)"'Z'X and X = ZA = P, X
(2) regress Y on X and obtain g% = (X’X)~1X'Y



Instrumental Variables Estimation

Large Sample Properties of 2SLS Estimator



Proposition (Consistency of f2515)
B?SLS — ‘B+ Op(l).

Some definitions needed for asymptotic variance:
Let CXZ = E(XZZ;), and CZZ == E(ZIZ;), aI’1C| CZX == E(ZIXZI)

Proposition (Asymptotic Distribution of g?5°)

YNBSS - B) S NGO, Q)

where
Q = (CxzC75Crx)1CxzC7LE(€?Z,Z})C55Crx (CxzC75Crx) 7t

Corollary
Under homoskedasticity, O = 02(CxzC75Czx) 7.



Consistent estimators for the asymptotic covariances are readily
obtained by using the analogy principle

So replace population moments by sample moments, because

N
Y X:Z}/N = Cxz +0,(1)
=il

N
Y Z,Z{/N = Czz +0,(1)
i=1

s

-
Il
-

Z;X;i/N = Czx +0,(1)

1=z

Z,Z;@?IN = E(Z,Zje?) + 0,(1)

iy

where é; := Y; — X/

The resulting covariance matrix estimator will be consistent



Instrumental Variables Estimation

Bias of 2SLS Estimator



What is the expected value of 2552
It's quite complicated to work this out
There exists a somewhat sobering result that offers some guidance

Lemma (Existence of Moments of 2SLS (Kinal))

Let (X,Y,Z) be jointly normal. The r-th moment of B> only exists
forintegersr < L, — K, + 1.

To obtain this result, Kinal had to impose the strong restriction of
normality (which is almost certainly far from the truth)

Applying this to a common case in practice:
K, =L, =1 = no expected value

Only over-identified models can hope to have E(3%%) <



Although the 2SLS estimator is consistent, it is biased
Where does this bias come from?

Recall the infeasible 2SLS estimator:
BiZSLS — (7‘['Z'Z7T)_l n/z/y

We can’t use i2SLS because we don't know 7

Brainwave: use 7t instead, and obtain
BB = (&' 7' ZR)  R'Z'Y

Seems like a good analogy principle solution, however using 7 in
place of 7 is the source of the bias of 2SLS
(even though 7t is a trusty and consistent estimator for )

Usually we don't make a big deal if an estimator has a little bias,
but the bias in the 2SLS setting can get out of control quickly

Let’s investigate



Let’s look at a toy model
Y;=XB+e
Xi = Z;TC + Ui/

where X; isa scalarand dimZ; =L >1

Let (e;,v;) ~ N(O, %)
(that is, we assume an exact bivariate normal distribution)

2SLS estimation makes sense here because E(e;X;) #0

To make life easier, let's pretend that

- 7.

1
-0=YN 77N
are non-stochastic (we treat them as constants)

We work with a simple toy model and make many simplifying
assumptions (otherwise the math becomes even more tedious)



Let’s start by showing that infeasible 2SLS is unbiased

Recall o
fiasts — nZyY
w'Z' 2
Therefore ;
—7'Ze
JN (g2sts —g) = N
(ﬁ ) %N'Z'Zﬂ

Let’s take a closer look at the numerator

For our toy model we can obtain an exact distribution:
1 171 02 _ 2 1A
LnZie~N (0. %'z 2r) =N (0,027 6m)

Therefore, infeasible 2SLS is unbiased



For 2SLS things are not so simple
In the scalar case, by definition:
RZY  X'Z(Z'Z2)7'Z'Y

BSLS = _
rA'Z'ZR X'Z(Z'Z)717'X

Rearranging results in
J%X'Z(Z'Z)—lz'e
A2SLS _
‘/N(‘B2 _’B)_ 1er / —1 7
~X'Z(2'Z)'Z'X

Both numerator and denominator are more complicated than for the
infeasible case

Let’s dissect them



We will make the following substitution: given X = Zm + v
Z'X=7Z'Zn+Zv
- X'Z=n'7'Z+v'Z

Turning first to the numerator

1 ’ ’ —17r
LX72(Z7) 1 Ze=-La'Ze+ Lv'Pe
= (£°2) ~ z

VN

1 1 o
= Lazesr L%yp vy Lo'Pw
VN oz TETUN

where | use the projection e; = ‘;—Egvi + w; with E(v;w;) =0
Because both e; and v; are normal, it follows that w; is normal

Moreover, for the normal distribution the zero covariance E(v,w;) = 0
implies that v; and w; are statistically independent
(that’s a special feature of the normal distribution)

For infeasible 2SLS the numerator only consisted of LNN’Z’e



Copy and paste from previous slide:
1 / r7\—171 1 171
—X'Z(Z'Z)" Z'e=—=n'Z
N LA s Se A

Tev 1 1
v'Pyv+ —0v'Pyw
VN

1
VN 7%

Looking at first two terms:
Laze~N (0 U—gﬂ’Z’Zn) =N (0 crzn’@rc)
7 N 4 e

VN
1 ey 1 4 1 1
N2 Pzv = E%ﬁ—v 7~ Eaev)(z(tr Pz) ~ J—N%XZ(L)

Notice that % ~ N(0, Iy), then using the lemma
if P ~ N(0,Iy) then P’QP ~ x2(tr (Q))

Having worked out the distributions of these two terms, we can
consider their expected values
Using E(x%(L)) = L, it follows that

E (Ln’Z’e) —0

VN
E (%%’U’sz) = ‘/%Laev



What's the expected value of the third term?

1 _ 1 / —
E(EU Pzw> = LE@)P2EW) =0

Why? Because v and w are independent rvs with zero mean

It follows, for the entire numerator:
E( Lx'z@zz)"17 ) =1L
( Lx2z2)7Z%) = Llo,

Ideally, this should be zero



Recall our earlier substitutions
I'X=Z"Zn+Z7Zv
 X'Z=n77+79Z

Now applying to the denominator:
LX'Z2Z'Z2) 12X = w22+ 2w 20 + Lo 22 2)"12'

Looking at the individual terms
l7r’Z’Z7t =70 = 0O(1)

402
N

7'L'Z'Z)~N(0 o3 'ZZn) (o,

1
F Opth = (Tﬁ)
i_g a1 ~ .
N0 Pzv ~ 5023 (L) = 50,(1) = 0, (&)

n’@n) = \/%N (0, Ugn’@n)

Bottom line: a decent approximation for the denominator is
“X'Z(ZZ)71Z'X ~ 'On



Putting things together and applying an asymptotic approximation
from Hahn and Hausman (2005)

o1 1
For small r, they use: —=— ~ —=—
Then . )
—m'Z'e+ —v'Pge
\/N(EZSLS _B) ~ VN A VN
T'On

Big picture: We want the study the expected value of g5t

We have done all the hard work, now we can derive the expected
value of the rhs

Laze+ LoPge ] 1 1L

E(N(B2LS = ~ E VN A\/ﬁ -
<‘/_(ﬁ ﬁ)> ( m'en \/NTT’G)HUEU



We have successfully approximated the bias of the 2SLS estimator:
~ 1 1 L
E 2SLS _ ~ — ~N —_
(:B ﬁ) Nﬂ,@ﬂ_aev Nn/®n0-evr
where ® = E(Z;Z))
This is the result from Hahn and Hausman (2005)
Let’s get a ‘feeling’ for what's going on

Following Hahn and Hausman, we make further simplifications and
recall a few basic concepts

Recall that earlier (e;, v;) ~ N(0,X)
Now, ¥ = (1 p)
o 1
(this amounts to a normalization that is wlog)

Notice that this implies o, = p



Do you remember R? from undergrad metrics? Refresher!

Given the reduced form X; = Z;m + v;, define

155 =0
ESS :=Var (Zjm) = 'O
RSS:=02 =1

(these are the definitions based on the population moments)

Recall from undergrad that R? := ESS/TSS
(the proportion of the variance of X; that is explained by Z;)

RSS
1-R2

Algebraic facts: R? = 1522 or equivalently TSS =

It follows that TSS = 1/(1 — R?)

Lastly, let F := N -R?/(1 — R?)

(proportion of the variance of X; that is explained by Z;
divided by

proportion of the variance of X; that is explained by v;)

Let’s fiddle around with our bias formula



We get the following results for the 2SLS bias

E(‘BZSLS_‘B) ~ ]T]

Let's interpret these



In each case, suppose that p is nonzero, implying that there is
indeed endogeneity present

The three equations illustrate ways in which the bias could blow up
They all concern the first stage regression of X; on Z;
Bias could blow up if

1. ESS~0

2.R?2~0

3. first stage F statistic is zero

These are all equivalent ways of saying:
the instruments don't explain the endogenous variable well enough

Of course, asymptotically, the bias is zero

But the problem that we point out here confronts researchers who,
in practice, deal with finite samples

We will pursue this further, both analytically and computationally



Instrumental Variables Estimation

Invalid Instruments



Consider the simple scalar model
Y;=XB+e
Xi = Zi7T+vi

In other words: K; =0,K, =L, =L =1

Let's make life easy: EZ; = 0 and EZ? = 1

Then 7t = Cov(X;, Z;) /Var (Z;) = E(X;Z;)/E(Z?) = E(X;Z;)
What happens when E(X;Z;) = 0 so that & = 0?

In that case, the first stage equation simplifies to X; = v;
Let's label this case invalid instrument

Using Z; as an IV doesn’'t make sense because it isn't one



Let’s further assume, for simplicity,
war (()=)=( %)
v; o 1

Endogeneity, of course, implies p # 0

Let's say, you recognize that Z; isn't really an IV and you decide to
resort to OLS instead

N _1eN
Y Xer NT'YLive p E(ve)
Y X7 N-1y. 02 E(o7)

g —p p#0
So O is not consistent, which we knew already
Can the instrument help, although it is invalid?

And if it doesn’t help, could the instrument do any harm?
(spoiler alert: Yes!)



1N
BY_p= Nl Zie p EZie) 0
N-1 Zﬁl Xz, EXZ) 0

which is indeterminate

Notice th%{
wlen) 2 @)1 0 L 5
\/Nizl Zv; & p 1
Notice that Var (Z;e;) = E(Z?e?) = E(Z?E(€?1Z;)) = 1
(and similarly for Var (Z;v;))
Here Cov(¢y, 62) = E(6162) = p
Then define &, := & — p&,

This makes Cov(&y, &) = E(&yér) =0,
meaning ¢, and & are independent
(joint normal and zero covariance implies independence)



Let's take another look now, plugging in &; = &y + p&y:

(and applying the continuous mapping theorem: the limiting
distribution of the ratio is the ratio of the limiting distributions)

The ratio of two independently normally distributed rvs with zero
mean results in a Cauchy distributed random variable that is
centered at zero
The Cauchy distribution is nasty

- although it is centered at zero it has infinite mean

- its median is zero

- it has thick tails (outliers)



We've learned that using 8"V when Z; isn't a valid IV results in an
estimator BV that

- does not converge in probability

- instead converges to a Cauchy distribution

- has a median of B+ p

Let’s say, you ignore all that and use an IV based f test anyway

What will happen?



What happens to the B'V—based t statistic under invalid instruments?

Recall the generic ¢ statistic that is based on an estimator j:

gy PP
456 =

Let’s make our lives easy and consider the standard error of A
under homoskedasticity

The estimator of the asymptotic variance for 8V is

N 2
. N 7e
var (/S'V|Zl-) = ag—%ﬂ !
(Xinq XiZ;)?
therefore
JAz N 2
se(B'V) _ 0 Zi=1 Z;

YN XZ;



Notice .
-1 Z(Y X,B'V)Z N-1 Z (Xz'(,B _Igw) + ei)z
) Nz:l A N
(Zez/N) 26"~ (Y. xeN )+ B - p2 (Y X2
i=1 i=1

128+ (2)

It follows for the standard error (using con’t mapping theorem):

(slz _{edsli o 1-2E+(2)

Se(A|V) — —
’ Zfi1 XiZ, \/_ﬁ Zizlxz &)
And for the t statlstlcs
_ (;B) _ ﬁ _ﬁ d §1/§2 _ (;(1
IB\\/ = AV ==
§2

(Note: the numerator is slightly different from Hansen)



Copy and paste last line from previous slide:
Egv(B) S a3 =: S(p)

What does this mean?
The t statistic does NOT converge to a normal distribution
So we can’t simply compare it to the +1.96 cutoffs

The asymptotic distribution of t depends on p, a parameter that we
don't know and cannot estimate

- pis the degree of endogeneity

To get more intuition about what's going on, let's send p to 1 which is
the worst possible case of endogeneity



The closer p — 1, the more ¢; and &, will resemble each other
Weird things will happen in the limit case as p — 1:

s 5 &

-0250

- se(B) 50

- S(p) -

- and ultimately the t statistic converges in probability to oo

That can’t be good

It means, that you are mechanically rejecting Hy irrespective of the
true value of B

Hansen puts it nicely in his book:

..users may incorrectly interpret estimates as precise, despite the
fact that they are useless.



Put slightly differently:
- the t statistic based on A" when instruments are invalid is
deceivingly optimistic
- it tends to be large suggesting a nonzero coefficient
- irrespective of the true value of B
- the large ¢ statistic is merely an artifact of the breakdown of the
asymptotic normal distribution
In the case r = 0, perhaps better to use OLS instead of IV?
Problem: in applications you don't usually know that 77 =0

Anyway, maybe the case 7t = 0 is too extreme and produces
problems that are too dramatic

Let’s study a case that is less extreme and therefore, maybe, less
dramatic: 7t # 0 but 7t ~ 0 (so-called weak instruments)



Instrumental Variables Estimation

Weak Instruments



We have seen that 7t = 0 (invalid instruments) leads to a breakdown
of statistical inference for the IV estimator

Now let's look at: 7w # 0 but 7 =~ 0

What I'm trying to say here:
7t is not equal to zero but it is close to zero or local to zero

We will use the same setup as in the invalid instrument case
(one endogenous regressor and one instrument)

Technically, local to zero is generated by letting 7 = N=1/27 where
T#0

Where does this come from? You could guess that, once you plug
this into an asymptotic expansion, it delivers a useful rate of
convergence



Reminder of the setup

Y; =X, +e;

X;=Z,m+v;
In other words: K; =0,K, =L, =L =1
We still assume that EZ; = 0 and EZ? = 1
Recall that 7 = E(X;Z,)/E(Z?) = E(X,;Z;)
What happens when E(X;Z;) ~ 0 so that r =~ 0?
Let's label this case weak instrument

To make life easy, let's assume

wr ()= 6 2)

Endogeneity, of course, implies p # 0



Let’s again first look at the OLS estimator
N x
goLs _g = 21 Xiei
N
Z41':1 X12
1N e
N Iy L (NTY22Z, + v))e;
T N1 wN
N-1y T (N"Y27Z; 4+ v;)?

p E(vie;)
” E(v?) =p#0

which is the same as before when r =0

Let’s turn to the IV estimator, remember
N
IB‘N —‘B _ Zi:l Ziei
T N
Zizl Zin'



We start by looking at

l
=— > ZitT+ — ) Z;v;
Nz‘:l l N i=1 o
i T+ 2
and recall
1 N
—> (Z’el> A (61> ~N (0,(1 p)) therefore
N i=1 szz 62
N
A1V w/lIT] Zi:l Ziti ¢1
pr—p=
LyN zX, Tté

Again: /§'V is inconsistent with non-normal asymptotic distribution



What happens to the ¢ test based on B under weak identification?

Recall the generic ¢ statistic that is based on an estimator B:

pp
B (P) = se(B)

Let's make our lives easy and consider the standard error of B
under homoskedasticity

The estimator of the asymptotic variance for 8V is

N -2
Z,
var (,B'V|Z) AZ—Z’ L
(Zz IXZ )2
therefore
N
ZZ
se(fV) = o, 2zt

Zl 1 XiZ;



Notice

-1 Z(Y X,B'V)Z N-1 i (Xz'(,B _Igw) + ei)z
) Nz:l A N
(Zez/N) 26"~ (Y. xeN )+ B - p2 (Y X2
i=1 i=1

49 g G +( & )2

T+§2 T+(:2

It follows that

o N 1 a )2
\/aezzizlzz'z_ \/‘7621\] Zz 127 d \ll 2pr+§2 (T+1§2)

se( A|V) = =
i >N XZ; e YN XZ; T+6
And for the ¢ statistic:
‘s (‘B)zﬁlv_ﬁ d_ a/(T+6) &1
/B\\/ Se( ~ >

vV -
PO N (B) (o2t s ()

T+Eo




Copy and paste last line from previous slide:

1
tan(B) S
g \ll—zp G1 +( G )2

T+ECo T+Co

=: 5(p, T)

What does this mean?
The t statistic does NOT converge to a normal distribution
So we can’t simply compare it to the +1.96 cutoffs

The asymptotic distribution of t depends on p and 7, two parameters
that we don’t know and cannot estimate

- pis the degree of endogeneity
- T is the strength of the instrument

To get more intuition about what's going on, let’s set p = 1 which is
the worst possible case of endogeneity



Then & = & and the ¢ statistic collapses to
it
5(1/7-—) - é]_ + ?/
Recall that & ~ N(0,1) and ¢Z ~ x?
So S(1, 1) is a mixture of a N(0,1) and a X% distribution

The degree of the mixture is controlled by the value of T

- if Tis very large, then S(1, ) will be close to N(0, 1)
(strong instrument case)

- if Tis very small, then the x? dominates and distorts away from
normality (weak instrument case)

- in the extreme we get lim,_,(S(1,7) = o
(that’s a terrible result: very weak instruments will yield
misleadingly large ¢t statistics suggesting significant 5 regardless
of the truth)
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