Advanced Econometrics I

Jürgen Meinecke
Lecture 5 of 12

Research School of Economics, Australian National University

Roadmap

Ordinary Least Squares Estimation
Weighted and Generalized Least Squares Estimation

Instrumental Variables Estimation

In the last assignment you have learned that the generalized least squares estimator $\hat{\beta}^{G L S}$ is the minimum variance unbiased estimator in the linear regression model under heteroskedasticity

This is a Gauss Markov theorem for the heteroskedastic case
But the derivation assumed knowledge of $\mathrm{E}\left(e e^{\prime} \mid X\right)$
In real life you don't have that knowledge, and $\hat{\beta}^{G L S}$ is practically useless, you cannot calculate it
For that reason we call $\hat{\beta}^{G L S}$ the infeasible GLS estimator
There exists a feasible variant, but it isn't used much
Let's first revisit the GLS setup

Error variance was

$$
\begin{aligned}
\mathrm{E}\left(e e^{\prime} \mid X\right) & =\sigma^{2} \cdot \Gamma=\sigma^{2} \cdot \operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{N}\right) \\
& =\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{N}^{2}\right)=: \Sigma
\end{aligned}
$$

Define $\tilde{Y}:=\Gamma^{-1 / 2} Y$ and $\tilde{X}:=\Gamma^{-1 / 2} X$
The GLS estimator is motivated as the OLS estimator of \tilde{Y} on \tilde{X} :

$$
\begin{aligned}
\hat{\beta}^{G L S} & :=\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1} \tilde{X}^{\prime} \tilde{Y} \\
& =\left(X^{\prime} \Gamma^{-1} X\right)^{-1} X^{\prime} \Gamma^{-1} Y \\
& =\left(X^{\prime} \Sigma^{-1} X\right)^{-1} X^{\prime} \Sigma^{-1} Y \\
& =\left(\sum_{i=1}^{N} X_{i} X_{i}^{\prime} / \sigma_{i}^{2}\right)^{-1} \sum_{i=1}^{N} X_{i} Y_{i} / \sigma_{i}^{2}
\end{aligned}
$$

Each observation is weighed inversely to its error variance Hence the alternative name weighted least squares estimator

How could we turn infeasible GLS into a feasible estimator?
Idea: use $\hat{\Sigma}=\Sigma+o_{p}(1)$ in place of Σ
Where does this consistent variance estimator come from?
Easy: OLS will provide a consistent (yet inefficient) estimator of β and therefore also of Σ

This suggests the following two step estimation approach:
(i) run OLS of Y on X, compute \hat{e} and obtain $\hat{\Sigma}$ by imposing some structure on $\mathrm{E}\left(e_{i}^{2} \mid X_{i}\right)$, for example $\mathrm{E}\left(e_{i}^{2} \mid X_{i}\right)=\sigma\left(X_{i}\right)$ where σ is some known function
(ii) compute $\hat{\beta}_{\text {feas }}^{G L S}:=\left(X^{\prime} \hat{\Sigma}^{-1} X\right)^{-1} X^{\prime} \hat{\Sigma}^{-1} Y$

Nobody uses this in practice, it's a textbook-only estimator
Feasible GLS does not satisfy the Gauss Markov theorem (because using $\hat{\Sigma}$ instead of Σ adds sampling error)

Roadmap

Ordinary Least Squares Estimation
Instrumental Variables EstimationMotivation
Main Idea in a Nutshell
General Setup
Identification
Definition of IV Estimator
Large Sample Properties of IV Estimator

We have discussed two types of linear models:

$$
\begin{array}{lll}
\text { linear projection: } & Y_{i}=X_{i}^{\prime} \beta^{*}+u_{i} & \mathrm{E}\left(u_{i} X_{i}\right)=0 \\
\text { linear regression: } & Y_{i}=X_{i}^{\prime} \beta+e_{i} & \mathrm{E}\left(e_{i} \mid X_{i}\right)=0
\end{array}
$$

If we are only interested in β^{*}, then OLS is best
The linear regression model can also be estimated via OLS because $\mathrm{E}\left(e_{i} \mid X_{i}\right)=0$ implies $\mathrm{E}\left(e_{i} X_{i}\right)=0$

But it is more restrictive: it says that the $\mathrm{E}\left(Y_{i} \mid X_{i}\right)$ is linear
It defines a structural model that is very simplistic: it basically states that the projection is the structural relation of interest

In practice, we are often dealing with this model instead:

$$
Y_{i}=X_{i}^{\prime} \beta+e_{i} \quad \mathrm{E}\left(e_{i} X_{i}\right) \neq 0
$$

It is often called structural model to emphasize that β is the coefficient of interest

Correspondingly, β is called structural parameter
I find this terminology unfortunate, because there is nothing inherently structural about these "models"

They are simple regression equations with the complication that β should not be estimated via OLS
(because $\mathrm{E}\left(e_{i} X_{i}\right) \neq 0$, and so β isn't the projection coefficient)
When $\mathrm{E}\left(e_{i} X_{i}\right) \neq 0$ we say that X_{i} is endogenous
Clearly, $\mathrm{E}\left(e_{i} \mid X_{i}\right) \neq 0$

The three textbook examples of endogeneity are

- measurement error
- simultaneity, simultaneous equations, and
- omitted variable bias

Let's have a look

Measurement Error

Let's say the "true" model is

$$
Y_{i}=X_{i}^{\prime} \beta+e_{i}, \quad \mathrm{E}\left(e_{i} \mid X_{i}\right)=0
$$

If you had data on (X_{i}, Y_{i}) then OLS would be best
But let's say you only observe (\tilde{X}_{i}, Y_{i}) with $\tilde{X}_{i}=X_{i}+r_{i}$ where r_{i} is a measurement error statistically independent of e_{i} and X_{i}

Despite its randomness, this error causes serious problems:

$$
Y_{i}=\tilde{X}_{i}^{\prime} \beta+v_{i}, \quad \text { where } v_{i}:=e_{i}-r_{i}^{\prime} \beta
$$

Can you safely use OLS here? Assuming $\mathrm{Er} r_{i}=0$,

$$
\mathrm{E}\left(\tilde{X}_{i} v_{i}\right)=\mathrm{E}\left(\left(X_{i}+r_{i}\right)\left(e_{i}-r_{i}^{\prime} \beta\right)\right)=-\mathrm{E}\left(r_{i} r_{i}^{\prime}\right) \beta \neq 0
$$

No you cannot! (unless $\beta=0$ or $\mathrm{E}\left(r_{i} r_{i}^{\prime}\right)=0$)

Simultaneity, Simultaneous Equations

Consider the following two equation model

$$
\begin{aligned}
& Y_{i 1}=X_{i 1}^{\prime} \beta_{1}+\theta_{1} Y_{i 2}+e_{i 1} \\
& Y_{i 2}=X_{i 2}^{\prime} \beta_{2}+\theta_{2} Y_{i 1}+e_{i 2}
\end{aligned}
$$

Let $X_{i 1}$ and $X_{i 2}$ be well behaved in the sense:
$\mathrm{E}\left(e_{i 1} X_{i 1}\right)=\mathrm{E}\left(e_{i 1} X_{i 2}\right)=\mathrm{E}\left(e_{i 2} X_{i 1}\right)=\mathrm{E}\left(e_{i 2} X_{i 2}\right)=0$
Further assume $E\left(e_{i 1} e_{i 2}\right)=0$ to keep things simple
Using $Y_{i 1}$ and $Y_{i 2}$ as regressors is problematic:

$$
\mathrm{E}\left(e_{i 1} Y_{i 2}\right)=\frac{\theta_{2}}{1-\theta_{1} \theta_{2}} \sigma_{1}^{2} \quad \mathrm{E}\left(e_{i 2} Y_{i 1}\right)=\frac{\theta_{1}}{1-\theta_{1} \theta_{2}} \sigma_{2}^{2}
$$

where $\sigma_{1}^{2}:=\operatorname{Var}\left(e_{i 1}\right)$ and $\sigma_{2}^{2}:=\operatorname{Var}\left(e_{i 1}\right)$
If $\theta_{2}=0$, then the first equation doesn't have an endogeneity problem and OLS is fine (similarly $\theta_{1}=0$ for second equation)

Omitted Variables Bias

A simple model illustrates the main idea

$$
Y_{i}=X_{i 1} \beta_{1}+X_{i 2} \beta_{2}+u_{i}
$$

where $\mathrm{E}\left(u_{i} \mid X_{i 1}\right)=0, \mathrm{E}\left(X_{i 2} \mid X_{i 1}\right) \neq 0$ and you don't observe $X_{i 2}$
You have to omit $X_{i 2}$ from the regression
Effectively you are facing the model

$$
Y_{i}=X_{i 1} \beta_{1}+e_{i} \quad e_{i}:=X_{i 2} \beta_{2}+u_{i}
$$

where $\mathrm{E}\left(e_{i} \mid X_{i 1}\right) \neq 0$
Is this a problem?
Only if $\mathrm{E}\left(e_{i} X_{i 1}\right) \neq 0$ which may well be the case

Roadmap

Ordinary Least Squares Estimation

Instrumental Variables Estimation
Motivation
Main Idea in a Nutshell
General Setup
Identification
Definition of IV Estimator
Large Sample Properties of IV Estimator

Let's say you have got three scalar rvs X_{i}, Y_{i}, Z_{i} and you have the model

$$
\begin{array}{ll}
Y_{i}=X_{i} \beta+e_{i} & \text { (structural equation) } \\
X_{i}=Z_{i} \pi+v_{i}, & \text { (first stage regression), }
\end{array}
$$

with $\mathrm{E}\left(v_{i} Z_{i}\right)=0$ (so first stage is simply a projection)
Your research interest is β
Should you use OLS to estimate it?
Yes if

- $\mathrm{E}\left(e_{i} \mid X_{i}\right)=0$
(then you don't really need Z_{i} at all)
- $\mathrm{E}\left(e_{i} \mid X_{i}\right) \neq 0$ but $\mathrm{E}\left(e_{i} X_{i}\right)=0$
(case of omitted variable non-bias)
In short: you need $\mathrm{E}\left(e_{i} X_{i}\right)=0$ for OLS to make sense

What if $\mathrm{E}\left(e_{i} X_{i}\right) \neq 0$
Then the existence of Z_{i} will be helpful as long as $\mathrm{E}\left(e_{i} Z_{i}\right)=0$
Notice that $\mathrm{E}\left(e_{i} Z_{i}\right)=0$ implies that $\mathrm{E}\left(e_{i} v_{i}\right) \neq 0$, that is, the error terms of both equations must be correlated

How does Z_{i} help?
Combine the two equations to get

$$
\begin{aligned}
Y_{i} & =Z_{i} \pi \beta+\left(e_{i}+v_{i} \beta\right) \\
& =Z_{i} \pi \beta+w_{i}
\end{aligned}
$$

where $\mathrm{E}\left(w_{i} Z_{i}\right)=0$
Therefore you can consistently estimate $\pi \beta$
Of course you can also consistently estimate π
Simple idea: divide the estimator of $\pi \beta$ by the estimator of π
It follows that you can back out a consistent estimator of β

Alternative motivation: estimate β in two stages
(i) Estimate π via OLS in the first stage regression, create $\hat{X}_{i}=\hat{\pi} Z_{i}$
(ii) Regress Y on \hat{X}_{i} using OLS

The estimator from stage (ii) is numerically identical to the one from the procedure explained on the preceding slide
Why should this make sense? Why can you use \hat{X}_{i} but not X_{i} in the structural equation?
Intuition: writing $X_{i}=\hat{X}_{i}+\hat{v}_{i}$ we surmise that

- \hat{X}_{i} captures the variation of X_{i} that is exogenous
- \hat{v}_{i} captures the variation of X_{i} that is endogneous

This little example provides a lot of the main ideas about IV estimation already
Unfortunately, however, things get considerably more intricate and complicated once the setup is generalized

It is very important to discuss this extensively in the lecture
IV and 2SLS estimation are pervasive in economics
I'm not sure you can publish a paper only based on OLS
People always cry "endogeneity!" and ask for an instrument
Let's properly understand the pros and cons, and provide best practices

Roadmap

Ordinary Least Squares Estimation
 Instrumental Variables Estimation

Motivation
Main Idea in a Nutshell
General Setup
Identification
Definition of IV Estimator
Large Samnle Pronerties of IV Estimator

Starting point is the following partition of the linear model

$$
\begin{aligned}
Y_{i} & =X_{i}^{\prime} \beta+e_{i} \\
& =X_{i 1}^{\prime} \beta_{1}+X_{i 2}^{\prime} \beta_{2}+e_{i}
\end{aligned}
$$

where $\operatorname{dim} \beta_{1}=\operatorname{dim} X_{i 1}=K_{1} \times 1$

$$
\operatorname{dim} \beta_{2}=\operatorname{dim} X_{i 2}=K_{2} \times 1 \text { with } K_{1}+K_{2}=K
$$

The two types of regressors are characterized by

$$
\begin{array}{ll}
\mathrm{E}\left(e_{i} X_{i 1}\right)=0 & \text { exogenous regressors } \\
\mathrm{E}\left(e_{i} X_{i 2}\right) \neq 0 & \text { endogenous regressors }
\end{array}
$$

This immediately tells you that $\beta \neq \beta^{*}$
Should we use OLS to estimate β ?

No, we shouldn't use OLS to estimate β
$\hat{\beta}^{O L S}$ will consistently estimate β^{*}
But $\beta \neq \beta^{*}$
We need something new
Enter the instrumental variable:

Definition (Instrumental Variable (IV))

A $L \times 1$ vector Z_{i} is called an instrumental variable (IV) if
(ii)
rank $\mathrm{E}\left(Z_{i} X_{i}^{\prime}\right)=K \quad$ instrument relevance

Notice that $X_{i 1}$ does satisfy (i) and will always be included in Z_{i} A necessary condition for (ii) is $L \geq K$ (at least as many equations as unknowns)

Think of Z_{i} as partitioned like so:

$$
Z_{i}:=\binom{Z_{i 1}}{Z_{i 2}}=\binom{X_{i 1}}{Z_{i 2}}
$$

Let $\operatorname{dim} Z_{i 2}=L_{2}$; it is clear that $\operatorname{dim} Z_{i 1}=K_{1}$
In other words, the first component of Z_{i} is always $X_{i 1}$ and the second component of Z_{i} are genuinely new instrumental variables that were not included in the model in the first place

The existence of $Z_{i 2}$ is crucial to be able to estimate β
Depending on the dimension of $Z_{i 2}$ we call the system

$$
\begin{array}{ll}
\operatorname{dim} Z_{i 2}=\operatorname{dim} X_{i 2} & \text { (exactly identified) } \\
\operatorname{dim} Z_{i 2}>\operatorname{dim} X_{i 2} & \text { (over identified) } \\
\operatorname{dim} Z_{i 2}<\operatorname{dim} X_{i 2} & \text { (under identified) }
\end{array}
$$

Roadmap

Ordinary Least Squares Estimation

Instrumental Variables Estimation
Motivation
Main Idea in a Nutshell
General Setup
Identification
Definition of IV Estimator
Large Sample Properties of IV Estimator

Now we turn our attention to two reduced form regressions:
(i) regressing X_{i} on Z_{i}
(ii) regressing Y_{i} on Z_{i}

Think of the reduced form as an auxiliary regression that you are using merely as a means to an end

You are not typically interested in the reduced form itself, you are only using it as a tool

The reduced form is usually free of any economic meaning

Reduced form for X_{i} as dependent variable Consider the multivariate regression model

$$
X_{i}=\pi^{\prime} Z_{i}+v_{i}
$$

This notation comprises K regressions with each element of X_{i} as a dependent variable

Notice that $\operatorname{dim} \pi=L \times K$
Let $\pi=\mathrm{E}\left(Z_{i} Z_{i}^{\prime}\right)^{-1} \mathrm{E}\left(Z_{i} X_{i}^{\prime}\right)$, implying $\mathrm{E}\left(Z_{i} v_{i}^{\prime}\right)=0$
(this means that the π are the projection coefficients)

Reduced form for Y_{i} as dependent variable
The reduced form for X_{i} can be plugged into the original regression:

$$
\begin{aligned}
Y_{i} & =X_{i}^{\prime} \beta+e_{i} \\
& =\left(\pi^{\prime} Z_{i}+v_{i}\right)^{\prime} \beta+e_{i} \\
& =Z_{i}^{\prime} \lambda+w_{i},
\end{aligned}
$$

with $\lambda:=\pi \beta$ and $w_{i}:=v_{i}^{\prime} \beta+e_{i}$
Notice that $\mathrm{E}\left(Z_{i} w_{i}\right)=\mathrm{E}\left(Z_{i} v_{i}^{\prime}\right) \beta+\mathrm{E}\left(Z_{i} e_{i}\right)=0$
This means that λ is a projection coefficient, that is, $\lambda=\mathrm{E}\left(Z_{i} Z_{i}^{\prime}\right)^{-1} \mathrm{E}\left(Z_{i} Y_{i}\right)$

Collecting results: for the two reduced form coefficients we have

$$
\begin{aligned}
& \lambda=\mathrm{E}\left(Z_{i} Z_{i}^{\prime}\right)^{-1} \mathrm{E}\left(Z_{i} Y_{i}\right) \\
& \pi=\mathrm{E}\left(Z_{i} Z_{i}^{\prime}\right)^{-1} \mathrm{E}\left(Z_{i} X_{i}^{\prime}\right)
\end{aligned}
$$

The rhs expressions are population moments which are uniquely determined by the distribution that generates the observed data

This implies that λ and π are uniquely determined too
They are identified
Great! But wait: we're not interested in λ and π
Instead we want to know about β

Identification of β is not so straightforward, recall:

$$
\pi \beta=\lambda
$$

Our goal: solve for β
Can't simply divide by π
Let's think about the dimensions

- $\operatorname{dim} \pi=L \times K$
- $\operatorname{dim} \beta=K \times 1$
- $\operatorname{dim} \lambda=L \times 1$

So $\pi \beta=\lambda$ is a system of L equations for K unknowns
Linear algebra tells you that there

- are no solutions or infinitely many solutions if $L<K$
- is hope for unique solution only if $L \geq K$

So let's only consider $L \geq K$

Today we'll focus on the case $L=K$
This case is usually called the exactly identified case
(Aside: $L>K$ is called the over-identified case)
With $L=K$, to solve $\pi \beta=\lambda$ for β
we need $\operatorname{rank} \pi=K$ (full rank) to ensure a unique solution
Notice that π is an upper triangular block matrix (see assignment 5) for which rank $\pi=K_{1}+\operatorname{rank} \mathrm{E}\left(Z_{i 2} X_{i 2}^{\prime}\right)$
So it only boils down to whether or not rank $E\left(Z_{i 2} X_{i 2}^{\prime}\right)=K_{2}$
The IV relevance condition makes this happen

Recall the IV relevance condition: rank $\mathrm{E}\left(\mathrm{Z}_{i} X_{i}^{\prime}\right)=K$
This condition implies rank $E\left(Z_{i 2} X_{i 2}^{\prime}\right)=K_{2}$
The IV relevance condition therefore ensures that π has full rank, so that we can use matrix inversion to solve $\pi \beta=\lambda$:

$$
\begin{aligned}
\beta & =\pi^{-1} \lambda \\
& =\mathrm{E}\left(Z_{i} X_{i}^{\prime}\right)^{-1} \mathrm{E}\left(Z_{i} Z_{i}^{\prime}\right) \mathrm{E}\left(Z_{i} Z_{i}^{\prime}\right)^{-1} \mathrm{E}\left(Z_{i} Y_{i}\right) \\
& =\mathrm{E}\left(Z_{i} X_{i}^{\prime}\right)^{-1} \mathrm{E}\left(Z_{i} Y_{i}\right)
\end{aligned}
$$

(we have used the fact that $(A B)^{-1}=B^{-1} A^{-1}$)
This solution for β motivates the IV estimator

Roadmap

Ordinary Least Squares Estimation
 Instrumental Variables Estimation

Motivation
Main Idea in a Nutshell
General Setun
Identification
Definition of IV Estimator
Large Sample Properties of IV Estimator

For the case $L=K$, we've just obtained this solution:

$$
\beta=\mathrm{E}\left(Z_{i} X_{i}^{\prime}\right)^{-1} \mathrm{E}\left(Z_{i} Y_{i}\right)
$$

Applying the analogy principle delivers the estimator

Definition (Instrumental Variable Estimator)

$$
\hat{\beta}^{\operatorname{IV}}=\left(\frac{1}{N} \sum_{i=1}^{N} Z_{i} X_{i}^{\prime}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} Z_{i} Y_{i}\right)=\left(Z^{\prime} X\right)^{-1} Z^{\prime} Y
$$

Aside: when there is only one endogenous variable and one instrumental variable, then the IV estimator is simply

$$
\hat{\beta}^{I V}=\frac{s_{X Y}}{s_{X Z}}
$$

that is, sample covariance between X_{i} and Y_{i} over the sample covariance between X_{i} and Z_{i}
(we need this in week 9 when we look at the Wald estimator)

Roadmap

Ordinary Least Squares Estimation

Instrumental Variables Estimation
Motivation
Main Idea in a Nutshell
General Setun
Identification
Definition of V Estimator
Large Sample Properties of IV Estimator

In assignment 5 you are asked to show:

Proposition (Consistency of $\hat{\beta}^{\text {IV }}$)

$$
\hat{\beta}^{\prime V}=\beta+o_{p}(1) .
$$

Proposition (Asymptotic Distribution of $\hat{\beta}^{\text {IV }}$)
$\sqrt{N}\left(\hat{\beta}^{\prime V}-\beta\right) \xrightarrow{d} N\left(0, E\left(Z_{i} X_{i}^{\prime}\right)^{-1} E\left(e_{i}^{2} Z_{i} Z_{i}^{\prime}\right) E\left(X_{i} Z_{i}^{\prime}\right)^{-1}\right)$.

