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In the last assignment you have learned that the generalized least
squares estimator ̂𝛽GLS is the minimum variance unbiased estimator
in the linear regression model under heteroskedasticity

This is a Gauss Markov theorem for the heteroskedastic case

But the derivation assumed knowledge of E(𝑒𝑒′|𝑋)

In real life you don’t have that knowledge, and ̂𝛽GLS is practically
useless, you cannot calculate it

For that reason we call ̂𝛽GLS the infeasible GLS estimator

There exists a feasible variant, but it isn’t used much

Let’s first revisit the GLS setup
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Error variance was
E(𝑒𝑒′|𝑋) = 𝜎2 ⋅ Γ = 𝜎2 ⋅ diag (𝛾1, … , 𝛾𝑁)

= diag (𝜎2
1 , … , 𝜎2

𝑁) =∶ Σ

Define �̃� ∶= Γ−1/2𝑌 and �̃� ∶= Γ−1/2𝑋

The GLS estimator is motivated as the OLS estimator of �̃� on �̃�:
̂𝛽GLS ∶= (�̃�′�̃�)−1�̃�′�̃�

= (𝑋′Γ−1𝑋)−1𝑋′Γ−1𝑌
= (𝑋′Σ−1𝑋)−1𝑋′Σ−1𝑌

= ⎛⎜
⎝

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖/𝜎2

𝑖
⎞⎟
⎠

−1 𝑁
∑
𝑖=1

𝑋𝑖𝑌𝑖/𝜎2
𝑖

Each observation is weighed inversely to its error variance

Hence the alternative name weighted least squares estimator
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How could we turn infeasible GLS into a feasible estimator?

Idea: use Σ̂ = Σ + o𝑝(1) in place of Σ

Where does this consistent variance estimator come from?

Easy: OLS will provide a consistent (yet inefficient) estimator of 𝛽
and therefore also of Σ

This suggests the following two step estimation approach:

(i) run OLS of 𝑌 on 𝑋, compute ̂𝑒 and obtain Σ̂ by imposing some
structure on E(𝑒2

𝑖 |𝑋𝑖), for example E(𝑒2
𝑖 |𝑋𝑖) = 𝜎(𝑋𝑖) where 𝜎 is

some known function
(ii) compute ̂𝛽GLS

feas ∶= (𝑋′Σ̂−1𝑋)−1𝑋′Σ̂−1𝑌

Nobody uses this in practice, it’s a textbook-only estimator

Feasible GLS does not satisfy the Gauss Markov theorem
(because using Σ̂ instead of Σ adds sampling error)
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We have discussed two types of linear models:

linear projection: 𝑌𝑖 = 𝑋′
𝑖𝛽∗ + 𝑢𝑖 E(𝑢𝑖𝑋𝑖) = 0

linear regression: 𝑌𝑖 = 𝑋′
𝑖𝛽 + 𝑒𝑖 E(𝑒𝑖|𝑋𝑖) = 0

If we are only interested in 𝛽∗, then OLS is best

The linear regression model can also be estimated via OLS
because E(𝑒𝑖|𝑋𝑖) = 0 implies E(𝑒𝑖𝑋𝑖) = 0

But it is more restrictive: it says that the E(𝑌𝑖|𝑋𝑖) is linear

It defines a structural model that is very simplistic:
it basically states that the projection is the structural relation of
interest
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In practice, we are often dealing with this model instead:
𝑌𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖 E(𝑒𝑖𝑋𝑖) ≠ 0

It is often called structural model to emphasize that 𝛽 is the
coefficient of interest

Correspondingly, 𝛽 is called structural parameter

I find this terminology unfortunate, because there is nothing
inherently structural about these “models”

They are simple regression equations with the complication that 𝛽
should not be estimated via OLS
(because E(𝑒𝑖𝑋𝑖) ≠ 0, and so 𝛽 isn’t the projection coefficient)

When E(𝑒𝑖𝑋𝑖) ≠ 0 we say that 𝑋𝑖 is endogenous

Clearly, E(𝑒𝑖|𝑋𝑖) ≠ 0

8 / 34



The three textbook examples of endogeneity are

• measurement error
• simultaneity, simultaneous equations, and
• omitted variable bias

Let’s have a look
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Measurement Error

Let’s say the “true” model is
𝑌𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖, E(𝑒𝑖|𝑋𝑖) = 0

If you had data on (𝑋𝑖, 𝑌𝑖) then OLS would be best

But let’s say you only observe (�̃�𝑖, 𝑌𝑖) with �̃�𝑖 = 𝑋𝑖 + 𝑟𝑖 where 𝑟𝑖 is a
measurement error statistically independent of 𝑒𝑖 and 𝑋𝑖

Despite its randomness, this error causes serious problems:
𝑌𝑖 = �̃�′

𝑖𝛽 + 𝑣𝑖, where 𝑣𝑖 ∶= 𝑒𝑖 − 𝑟′
𝑖𝛽

Can you safely use OLS here? Assuming E𝑟𝑖 = 0,
E(�̃�𝑖𝑣𝑖) = E ((𝑋𝑖 + 𝑟𝑖)(𝑒𝑖 − 𝑟′

𝑖𝛽)) = −E(𝑟𝑖𝑟′
𝑖)𝛽 ≠ 0

No you cannot! (unless 𝛽 = 0 or E(𝑟𝑖𝑟′
𝑖) = 0)
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Simultaneity, Simultaneous Equations

Consider the following two equation model
𝑌𝑖1 = 𝑋′

𝑖1𝛽1 + 𝜃1𝑌𝑖2 + 𝑒𝑖1

𝑌𝑖2 = 𝑋′
𝑖2𝛽2 + 𝜃2𝑌𝑖1 + 𝑒𝑖2

Let 𝑋𝑖1 and 𝑋𝑖2 be well behaved in the sense:
E(𝑒𝑖1𝑋𝑖1) = E(𝑒𝑖1𝑋𝑖2) = E(𝑒𝑖2𝑋𝑖1) = E(𝑒𝑖2𝑋𝑖2) = 0

Further assume E(𝑒𝑖1𝑒𝑖2) = 0 to keep things simple

Using 𝑌𝑖1 and 𝑌𝑖2 as regressors is problematic:
E(𝑒𝑖1𝑌𝑖2) = E (𝑒𝑖1(𝑋′

𝑖2𝛽2 + 𝜃2𝑌𝑖1 + 𝑒𝑖2)) = 𝜃2E(𝑒𝑖1𝑌𝑖1)
= 𝜃2E (𝑒𝑖1(𝑋′

𝑖1𝛽1 + 𝜃1𝑌𝑖2 + 𝑒𝑖1))
= 𝜃1𝜃2E (𝑒𝑖1𝑌𝑖2) + 𝜎2

1

= 𝜃2
1 − 𝜃1𝜃2

𝜎2
1 ≠ 0

where 𝜎2
1 ∶= Var (𝑒𝑖1)
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Therefore, in the two equation model
𝑌𝑖1 = 𝑋′

𝑖1𝛽1 + 𝜃1𝑌𝑖2 + 𝑒𝑖1

𝑌𝑖2 = 𝑋′
𝑖2𝛽2 + 𝜃2𝑌𝑖1 + 𝑒𝑖2

the errors are not uncorrelated with all regressors
E(𝑒𝑖1𝑌𝑖2) = 𝜃2

1 − 𝜃1𝜃2
𝜎2

1 E(𝑒𝑖2𝑌𝑖1) = 𝜃1
1 − 𝜃1𝜃2

𝜎2
2

If 𝜃2 = 0, then the first equation doesn’t have an endogeneity
problem and OLS is fine (similarly 𝜃1 = 0 for second equation)
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Omitted Variables Bias

A simple model illustrates the main idea
𝑌𝑖 = 𝑋𝑖1𝛽1 + 𝑋𝑖2𝛽2 + 𝑢𝑖

where E(𝑢𝑖|𝑋𝑖1) = 0, E(𝑋𝑖2|𝑋𝑖1) ≠ 0 and you don’t observe 𝑋𝑖2

You have to omit 𝑋𝑖2 from the regression

Effectively you are facing the model
𝑌𝑖 = 𝑋𝑖1𝛽1 + 𝑒𝑖 𝑒𝑖 ∶= 𝑋𝑖2𝛽2 + 𝑢𝑖

where E(𝑒𝑖|𝑋𝑖1) ≠ 0

Is this a problem?

Only if E(𝑒𝑖𝑋𝑖1) ≠ 0 which may well be the case
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Let’s say you have got three scalar rvs 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 and you have the
model

𝑌𝑖 = 𝑋𝑖𝛽 + 𝑒𝑖 (structural equation)
𝑋𝑖 = 𝑍𝑖𝜋 + 𝑣𝑖, E(𝑣𝑖𝑍𝑖) = 0 (first stage regression)

Notice: first stage is simply a projection

Your research interest is 𝛽

Should you use OLS to estimate it? Yes if

• E(𝑒𝑖|𝑋𝑖) = 0
(then you don’t really need 𝑍𝑖 at all)

• E(𝑒𝑖|𝑋𝑖) ≠ 0 but E(𝑒𝑖𝑋𝑖) = 0
(case of omitted variable non-bias)

In short: you need E(𝑒𝑖𝑋𝑖) = 0 for OLS to make sense
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What if E(𝑒𝑖𝑋𝑖) ≠ 0

Then the existence of 𝑍𝑖 will be helpful as long as E(𝑒𝑖𝑍𝑖) = 0

Notice that E(𝑒𝑖𝑍𝑖) = 0 implies that E(𝑒𝑖𝑣𝑖) ≠ 0, that is,
the error terms of both equations must be correlated

How does 𝑍𝑖 help?

Combine the two equations to get
𝑌𝑖 = 𝑍𝑖𝜋𝛽 + (𝑒𝑖 + 𝑣𝑖𝛽)

= 𝑍𝑖𝜋𝛽 + 𝑤𝑖,

where E(𝑤𝑖𝑍𝑖) = 0

Therefore you can consistently estimate 𝜋𝛽

Of course you can also consistently estimate 𝜋

Simple idea: divide the estimator of 𝜋𝛽 by the estimator of 𝜋

It follows that you can back out a consistent estimator of 𝛽
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Alternative motivation: estimate 𝛽 in two stages

(i) Estimate 𝜋 via OLS in the first stage regression,
create �̂�𝑖 = �̂�𝑍𝑖

(ii) Regress 𝑌 on �̂�𝑖 using OLS

The estimator from stage (ii) is numerically identical to the one from
the procedure explained on the preceding slide

Why should this make sense?
Why can you use �̂�𝑖 but not 𝑋𝑖 in the structural equation?

Intuition: writing 𝑋𝑖 = �̂�𝑖 + ̂𝑣𝑖 we see that

• �̂�𝑖 captures the variation of 𝑋𝑖 that is exogenous
• ̂𝑣𝑖 captures the variation of 𝑋𝑖 that is endogenous
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This little example provides a lot of the main ideas about IV
estimation already

Unfortunately, however, things get considerably more intricate and
complicated once the setup is generalized

It is very important to discuss this extensively in the lecture

IV and 2SLS estimation are pervasive in economics

I’m not sure you can publish a paper only based on OLS

People always cry “endogeneity!” and ask for an instrument

Let’s properly understand the pros and cons, and provide best
practices
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Starting point is the following partition of the linear model
𝑌𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖

= 𝑋′
𝑖1𝛽1 + 𝑋′

𝑖2𝛽2 + 𝑒𝑖

where dim 𝛽1 = dim 𝑋𝑖1 = 𝐾1 × 1
dim 𝛽2 = dim 𝑋𝑖2 = 𝐾2 × 1 with 𝐾1 + 𝐾2 = 𝐾

The two types of regressors are characterized by
E(𝑒𝑖𝑋𝑖1) = 0 (exogenous regressors)
E(𝑒𝑖𝑋𝑖2) ≠ 0 (endogenous regressors)

This immediately tells you that 𝛽 ≠ 𝛽∗

Should we use OLS to estimate 𝛽?
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No, we shouldn’t use OLS to estimate 𝛽
̂𝛽OLS will consistently estimate 𝛽∗, but 𝛽 ≠ 𝛽∗

We need something new

Enter the instrumental variable:

Definition (Instrumental Variable (IV))
A 𝐿 × 1 vector 𝑍𝑖 is called an instrumental variable (IV) if

(i) E(𝑍𝑖𝑒𝑖) = 0 instrument exogeneity
(ii) rank E(𝑍𝑖𝑋′

𝑖) = 𝐾 instrument relevance

Notice that 𝑋𝑖1 does satisfy (i) and will always be included in 𝑍𝑖

Intuition for (ii): nonzero correlation between 𝑋𝑖 and 𝑍𝑖

A necessary condition for (ii) is 𝐿 ≥ 𝐾
(at least as many equations as unknowns)
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Think of 𝑍𝑖 as partitioned like so:

𝑍𝑖 ∶= ⎛⎜
⎝

𝑍𝑖1
𝑍𝑖2

⎞⎟
⎠

= ⎛⎜
⎝

𝑋𝑖1
𝑍𝑖2

⎞⎟
⎠

Let dim 𝑍𝑖2 = 𝐿2; it is clear that dim 𝑍𝑖1 = 𝐾1

In other words, the first component of 𝑍𝑖 is always 𝑋𝑖1 and the
second component of 𝑍𝑖 are genuinely new instrumental variables
that were not included in the model in the first place

The existence of 𝑍𝑖2 is crucial to be able to estimate 𝛽

Depending on the dimension of 𝑍𝑖2 we call the system
dim 𝑍𝑖2 = dim 𝑋𝑖2 (exactly identified)
dim 𝑍𝑖2 > dim 𝑋𝑖2 (over identified)
dim 𝑍𝑖2 < dim 𝑋𝑖2 (under identified)
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Now we turn our attention to two reduced form regressions:

(i) regressing 𝑋𝑖 on 𝑍𝑖 (this is the first stage regression)
(ii) regressing 𝑌𝑖 on 𝑍𝑖

Think of the reduced form as an auxiliary regression that you are
using merely as a means to an end

You are not typically interested in the reduced form itself, you are
only using it as a tool

The reduced form is usually free of any economic meaning
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Reduced form for 𝑋𝑖 as dependent variable

Consider the multivariate regression model
𝑋𝑖 = 𝜋′𝑍𝑖 + 𝑣𝑖

This notation comprises 𝐾 regressions with each element of 𝑋𝑖 as a
dependent variable

Notice that dim 𝜋 = 𝐿 × 𝐾

Let 𝜋 = E(𝑍𝑖𝑍′
𝑖)−1E(𝑍𝑖𝑋′

𝑖), implying E(𝑍𝑖𝑣′
𝑖) = 0

(this means that the 𝜋 are the projection coefficients)
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Reduced form for 𝑌𝑖 as dependent variable

The reduced form for 𝑋𝑖 can be plugged into the original regression:
𝑌𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖

= (𝜋′𝑍𝑖 + 𝑣𝑖)′𝛽 + 𝑒𝑖

= 𝑍′
𝑖𝜆 + 𝑤𝑖,

with 𝜆 ∶= 𝜋𝛽 and 𝑤𝑖 ∶= 𝑣′
𝑖𝛽 + 𝑒𝑖

Notice that E(𝑍𝑖𝑤𝑖) = E(𝑍𝑖𝑣′
𝑖)𝛽 + E(𝑍𝑖𝑒𝑖) = 0

This means that 𝜆 is a projection coefficient, that is,
𝜆 = E(𝑍𝑖𝑍′

𝑖)−1E(𝑍𝑖𝑌𝑖)
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Collecting results: for the two reduced form coefficients we have
𝜆 = E(𝑍𝑖𝑍′

𝑖)−1E(𝑍𝑖𝑌𝑖)
𝜋 = E(𝑍𝑖𝑍′

𝑖)−1E(𝑍𝑖𝑋′
𝑖)

The rhs expressions are population moments which are uniquely
determined by the distribution that generates the observed data

This implies that 𝜆 and 𝜋 are uniquely determined too

They are identified

Great! But wait: we’re not interested in 𝜆 and 𝜋

Instead we want to know about 𝛽
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Identification of 𝛽 is not so straightforward, recall:
𝜋𝛽 = 𝜆

Our goal: solve for 𝛽

Can’t simply divide by 𝜋

Let’s think about the dimensions

• dim 𝜋 = 𝐿 × 𝐾
• dim 𝛽 = 𝐾 × 1
• dim 𝜆 = 𝐿 × 1

So 𝜋𝛽 = 𝜆 is a system of 𝐿 equations for 𝐾 unknowns

Linear algebra tells you that there

• are no solutions or infinitely many solutions if 𝐿 < 𝐾
• is hope for unique solution only if 𝐿 ≥ 𝐾

So let’s only consider 𝐿 ≥ 𝐾
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Today we’ll focus on the case 𝐿 = 𝐾

This case is usually called the exactly identified case

(Aside: 𝐿 > 𝐾 is called the over-identified case)

With 𝐿 = 𝐾, to solve 𝜋𝛽 = 𝜆 for 𝛽
we need rank 𝜋 = 𝐾 (full rank) to ensure a unique solution

Notice that 𝜋 is an upper triangular block matrix (see assignment 5)
for which rank 𝜋 = 𝐾1 + rank E(𝑍𝑖2𝑋′

𝑖2)

So it only boils down to whether or not rank E(𝑍𝑖2𝑋′
𝑖2) = 𝐾2

The IV relevance condition makes this happen
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Recall the IV relevance condition: rank E(𝑍𝑖𝑋′
𝑖) = 𝐾

This condition implies rank E(𝑍𝑖2𝑋′
𝑖2) = 𝐾2

The IV relevance condition therefore ensures that 𝜋 has full rank, so
that we can use matrix inversion to solve 𝜋𝛽 = 𝜆:

𝛽 = 𝜋−1𝜆
= E(𝑍𝑖𝑋′

𝑖)−1E(𝑍𝑖𝑍′
𝑖)E(𝑍𝑖𝑍′

𝑖)−1E(𝑍𝑖𝑌𝑖)
= E(𝑍𝑖𝑋′

𝑖)−1E(𝑍𝑖𝑌𝑖)

(we have used the fact that (𝐴𝐵)−1 = 𝐵−1𝐴−1)

This solution for 𝛽 motivates the IV estimator
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For the case 𝐿 = 𝐾, we’ve just obtained this solution:
𝛽 = E(𝑍𝑖𝑋′

𝑖)−1E(𝑍𝑖𝑌𝑖)

Applying the analogy principle delivers the estimator

Definition (Instrumental Variable Estimator)

̂𝛽IV = ⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑍𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑍𝑖𝑌𝑖
⎞⎟
⎠

= (𝑍′𝑋)−1𝑍′𝑌

Aside: when there is only one endogenous variable and one
instrumental variable, then the IV estimator is simply

̂𝛽IV = 𝑠𝑍𝑌
𝑠𝑋𝑍

that is, sample covariance between 𝑍𝑖 and 𝑌𝑖 over the sample
covariance between 𝑋𝑖 and 𝑍𝑖
(we need this in week 9 when we look at the Wald estimator)
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In assignment 5 you are asked to show:

Proposition (Consistency of ̂𝛽IV)
̂𝛽IV = 𝛽 + o𝑝(1).

Proposition (Asymptotic Distribution of ̂𝛽IV)

√𝑁( ̂𝛽IV − 𝛽) d→ N (0, E(𝑍𝑖𝑋′
𝑖)−1E(𝑒2

𝑖 𝑍𝑖𝑍′
𝑖)E(𝑋𝑖𝑍′

𝑖)−1) .
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