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We combined the structural and first stage equations like so:
𝑌𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖

= (𝜋′𝑍𝑖 + 𝑣𝑖)′𝛽 + 𝑒𝑖

= 𝑍′
𝑖𝜆 + 𝑤𝑖,

with 𝜆 ∶= 𝜋𝛽 and 𝑤𝑖 ∶= 𝑣′
𝑖𝛽 + 𝑒𝑖

Recall the two reduced form projection coefficients

• regressing 𝑌𝑖 on 𝑍𝑖 results in 𝜆 = E(𝑍𝑖𝑍′
𝑖)−1E(𝑍𝑖𝑌𝑖)

• regressing 𝑋𝑖 on 𝑍𝑖 results in 𝜋 = E(𝑍𝑖𝑍′
𝑖)−1E(𝑍𝑖𝑋′

𝑖)

Let’s recall their dimensions

• dim 𝜆 = 𝐿 × 1
• dim 𝜋 = 𝐿 × 𝐾
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We learned that the projection coefficients 𝜆 and 𝜋 are identified
because they are explicit functions of population moments

This means we can uniquely estimate them

Practically we treat them as if they were known to us (because we
have faith in uniquely estimating them via analog principle)

In contrast, identification of 𝛽 is not so easy because 𝜆 = 𝜋𝛽
is a system of 𝐿 equations for 𝐾 unknowns

Linear algebra tells you that there

• are no solutions or infinitely many solutions if 𝐿 < 𝐾
• is hope for unique solution only if 𝐿 ≥ 𝐾

So let’s only consider 𝐿 ≥ 𝐾
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Two sub-cases here

• 𝐿 = 𝐾
then dim 𝜋 = 𝐾 × 𝐾 and if it is invertible then

𝛽 = 𝜋−1𝜆 = E(𝑍𝑖𝑋′
𝑖)−1E(𝑍𝑖𝑌𝑖)

This solution for 𝛽 motivates the IV estimator
• 𝐿 > 𝐾 then we cannot simply invert, but we can do this:

𝜋𝛽 = 𝜆 ⇔ 𝜋′𝜋𝛽 = 𝜋′𝜆
and therefore

𝛽 = (𝜋′𝜋)−1𝜋′𝜆

But (�̂�′�̂�)−1�̂�′�̂� is not the 2SLS estimator

The 2SLS estimator has a different motivation
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Again looking at our structural equation and plugging in the first
stage

𝑌𝑖 = 𝑋′
𝑖𝛽 + 𝑒𝑖

= (𝜋′𝑍𝑖 + 𝑣𝑖)′𝛽 + 𝑒𝑖

= 𝑍′
𝑖𝜋𝛽 + (𝑣′

𝑖𝛽 + 𝑒𝑖)
= 𝑍′

𝑖𝜋𝛽 + 𝑤𝑖

If you knew 𝜋 you could define �̃�′
𝑖 = 𝑍′

𝑖𝜋 and write
𝑌𝑖 = �̃�′

𝑖𝛽 + 𝑤𝑖,

where E(�̃�𝑖𝑤𝑖) = 0

Clearly, OLS would work fine here
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Notice that dim �̃�𝑖 = dim 𝑋𝑖 = 𝐾 × 1

The corresponding matrix �̃� ∶= 𝑍𝜋 with dim �̃� = dim 𝑋 = 𝑁 × 𝐾

The OLS estimator is
̂𝛽i2SLS ∶= (�̃�′�̃�)−1 �̃�′𝑌

= (�̃�′�̃�)−1 �̃�′𝑌

= (𝜋′𝑍′𝑍𝜋)−1 𝜋′𝑍′𝑌

This OLS estimator is infeasible because we don’t know 𝜋

But we can turn it into a feasible estimator by plugging in the
consistent estimator �̂� ∶= (𝑍′𝑍)−1𝑍′𝑋

And this is indeed what the 2SLS estimator does
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Definition (Two Stage Least Squares (2SLS) Estimator)

̂𝛽2SLS ∶= (�̂�′𝑍′𝑍�̂�)−1 �̂�′𝑍′𝑌

= (𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋)−1 𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑌

In summation notation:

̂𝛽2SLS = ⎡⎢⎢
⎣
⎛⎜
⎝

𝑁
∑
𝑖=1

𝑋𝑖𝑍′
𝑖
⎞⎟
⎠

⎛⎜
⎝

𝑁
∑
𝑖=1

𝑍𝑖𝑍′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

𝑁
∑
𝑖=1

𝑍𝑖𝑋′
𝑖
⎞⎟
⎠

⎤⎥⎥
⎦

−1

×

⎛⎜
⎝

𝑁
∑
𝑖=1

𝑋𝑖𝑍′
𝑖
⎞⎟
⎠

⎛⎜
⎝

𝑁
∑
𝑖=1

𝑍𝑖𝑍′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

𝑁
∑
𝑖=1

𝑍𝑖𝑌𝑖
⎞⎟
⎠
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Three different interpretations of ̂𝛽2SLS

Recall 𝑃𝑍 ∶= 𝑍(𝑍′𝑍)−1𝑍′ is the symmetric and idempotent
projection matrix

Then �̂� ∶= 𝑃𝑍𝑋 is the projection of 𝑋 on 𝑍

It follows
̂𝛽2SLS = (𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋)−1 𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑌

= (𝑋′𝑃𝑍𝑋)−1 𝑋′𝑃𝑍𝑌 (1)

= ((𝑃𝑍𝑋)′𝑋)−1 (𝑃𝑍𝑋)′𝑌

= (�̂�′𝑋)−1 �̂�′𝑌 (2)

= (𝑋′𝑃𝑍𝑃𝑍𝑋)−1 𝑋′𝑃𝑍𝑌

= ((𝑃𝑍𝑋)′(𝑃𝑍𝑋))−1 (𝑃𝑍𝑋)′𝑌

= (�̂�′�̂�)−1 �̂�′𝑌 (3)

9 / 23



Equation (1) is the most common matrix representation of ̂𝛽2SLS in
textbooks and lecture notes

Equation (2) presents the 2SLS estimator as an IV estimator, it has
the same structure as ̂𝛽IV with �̂� used in place of 𝑍

Equation (3) presents the 2SLS estimator as an OLS estimator of 𝑌
on �̂�

The third interpretation justifies label ‘two stage least squares’:

(1) regress 𝑋 on 𝑍, obtain �̂� = (𝑍′𝑍)−1𝑍′𝑋 and �̂� = 𝑍�̂� = 𝑃𝑍𝑋
(2) regress 𝑌 on �̂� and obtain ̂𝛽2SLS = (�̂�′�̂�)−1�̂�′𝑌
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Proposition (Consistency of ̂𝛽2SLS)
̂𝛽2SLS = 𝛽 + o𝑝(1).

Some definitions needed for asymptotic variance:
Let 𝐶𝑋𝑍 = E(𝑋𝑖𝑍′

𝑖), and 𝐶𝑍𝑍 = E(𝑍𝑖𝑍′
𝑖), and 𝐶𝑍𝑋 = E(𝑍𝑖𝑋′

𝑖).

Proposition (Asymptotic Distribution of ̂𝛽2SLS)

√𝑁( ̂𝛽2SLS − 𝛽) d→ N(0, Ω)

where
Ω = (𝐶𝑋𝑍𝐶−1

𝑍𝑍𝐶𝑍𝑋)−1𝐶𝑋𝑍𝐶−1
𝑍𝑍E(𝑒2

𝑖 𝑍𝑖𝑍′
𝑖)𝐶−1

𝑍𝑍𝐶𝑍𝑋(𝐶𝑋𝑍𝐶−1
𝑍𝑍𝐶𝑍𝑋)−1

Corollary
Under homoskedasticity, Ω = 𝜎2

𝑒 (𝐶𝑋𝑍𝐶−1
𝑍𝑍𝐶𝑍𝑋)−1.
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Consistent estimators for the asymptotic covariances are readily
obtained by using the analogy principle

So replace population moments by sample moments, because
𝑁

∑
𝑖=1

𝑋𝑖𝑍′
𝑖/𝑁 = 𝐶𝑋𝑍 + o𝑝(1)

𝑁
∑
𝑖=1

𝑍𝑖𝑍′
𝑖/𝑁 = 𝐶𝑍𝑍 + o𝑝(1)

𝑁
∑
𝑖=1

𝑍𝑖𝑋′
𝑖/𝑁 = 𝐶𝑍𝑋 + o𝑝(1)

𝑁
∑
𝑖=1

𝑍𝑖𝑍′
𝑖 ̂𝑒2

𝑖 /𝑁 = E(𝑍𝑖𝑍′
𝑖𝑒2

𝑖 ) + o𝑝(1)

where ̂𝑒𝑖 ∶= 𝑌𝑖 − 𝑋′
𝑖 ̂𝛽2SLS

The resulting covariance matrix estimator will be consistent

13 / 23



Roadmap

Instrumental Variables Estimation

Two Stage Least Squares (2SLS) Estimator

Large Sample Properties of 2SLS Estimator

Bias of 2SLS Estimator

14 / 23



Although the 2SLS estimator is consistent, it is biased

Where does this bias come from?

Recall the infeasible 2SLS estimator:
̂𝛽i2SLS = (𝜋′𝑍′𝑍𝜋)−1 𝜋′𝑍′𝑌

We can’t use i2SLS because we don’t know 𝜋

Brainwave: use �̂� instead, and obtain
̂𝛽2SLS = (�̂�′𝑍′𝑍�̂�)−1 �̂�′𝑍′𝑌

Seems like a good analogy principle solution, however using �̂� in
place of 𝜋 is the source of the bias of 2SLS
(even though �̂� is a trusty and consistent estimator for 𝜋)

Usually we don’t make a big deal if an estimator has a little bias, but
the bias in the 2SLS setting can get out of control quickly

Let’s investigate
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Let’s look at a toy model
𝑌𝑖 = 𝑋𝑖𝛽 + 𝑒𝑖

𝑋𝑖 = 𝑍′
𝑖𝜋 + 𝑣𝑖,

where 𝑋𝑖 is a scalar and dim 𝑍𝑖 = 𝐿 ≥ 1

Let (𝑒𝑖, 𝑣𝑖) ∼ N(0, Σ)
(that is, we assume an exact bivariate normal distribution)

2SLS estimation makes sense here because E(𝑒𝑖𝑋𝑖) ≠ 0

To make life easier, let’s pretend that

• 𝑍𝑖

• Ξ ∶= ∑𝑁
𝑖=1 𝑍𝑖𝑍′

𝑖/𝑁

are non-stochastic (we treat them as constants)

We work with a simple toy model and make many simplifying
assumptions (otherwise the math becomes even more tedious)
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In the scalar case, by definition:
̂𝛽2SLS = 𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑌

𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋

Rearranging results in

√𝑁 ( ̂𝛽2SLS − 𝛽) =
1

√𝑁
𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑒

1
𝑁 𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋

Let’s dissect numerator and denominator
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Turning first to the numerator

We will make the following substitution: given 𝑋 = 𝑍𝜋 + 𝑣

• 𝑍′𝑋 = 𝑍′𝑍𝜋 + 𝑍′𝑣
• 𝑋′𝑍 = 𝜋′𝑍′𝑍 + 𝑣′𝑍

These can be used in numerator and denominator

1
√𝑁

𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑒 = 1
√𝑁

𝜋′𝑍′𝑒 + 1
√𝑁

𝑣′𝑃𝑍𝑒

= 1
√𝑁

𝜋′𝑍′𝑒 + 1
√𝑁

𝜎𝑒𝑣
𝜎2𝑣

𝑣′𝑃𝑍𝑣 + 1
√𝑁

𝑣′𝑃𝑍𝑤

where I use the projection 𝑒𝑖 = 𝜎𝑒𝑣
𝜎2𝑣

𝑣𝑖 + 𝑤𝑖 with E(𝑣𝑖𝑤𝑖) = 0

Because both 𝑒𝑖 and 𝑣𝑖 are normal, it follows that 𝑤𝑖 is normal

Moreover, in that case E(𝑣𝑖𝑤𝑖) = 0 implies that 𝑣𝑖 and 𝑤𝑖 are
statistically independent
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Copy and paste from previous slide:
1

√𝑁
𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑒 = 1

√𝑁
𝜋′𝑍′𝑒 + 1

√𝑁
𝜎𝑒𝑣
𝜎2𝑣

𝑣′𝑃𝑍𝑣 + 1
√𝑁

𝑣′𝑃𝑍𝑤

Looking at first two terms:
1

√𝑁
𝜋′𝑍′𝑒 ∼ N(0, 𝜎2

𝑒
𝑁 𝜋′𝑍′𝑍𝜋) = N (0, 𝜎2

𝑒 𝜋′Ξ𝜋)
1

√𝑁
𝜎𝑒𝑣
𝜎2𝑣

𝑣′𝑃𝑍𝑣 ∼ 1
√𝑁

𝜎𝑒𝑣𝜒2(tr 𝑃𝑍) ∼ 1
√𝑁

𝜎𝑒𝑣𝜒2(𝐿)

where I have used the lemma: if 𝑃 ∼ N(0, 𝐼𝑁) then 𝑃′𝑄𝑃 ∼ 𝜒2(tr (𝑄))

Having worked out the distributions of these two terms, we can
consider their expected values

Using E(𝜒2(𝐿)) = 𝐿, it follows that
E( 1

√𝑁
𝜋′𝑍′𝑒) = 0

E( 1
√𝑁

𝜎𝑒𝑣
𝜎2𝑣

𝑣′𝑃𝑍𝑣) = 1
√𝑁

𝐿𝜎𝑒𝑣
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What’s the expected value of the third term?

E( 1
√𝑁

𝑣′𝑃𝑍𝑤) = 0

Why? Because 𝑣 and 𝑤 are independent rvs with zero mean

Bottom line for the entire numerator:

E( 1
√𝑁

𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑒) = 1
√𝑁

𝐿𝜎𝑒𝑣

Ideally, this should be zero

Have you noticed at which stage the bias has entered?
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Now the denominator:
1
𝑁 𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋 = 1

𝑁 𝜋′𝑍′𝑍𝜋 + 2
𝑁 𝜋′𝑍′𝑣 + 1

𝑁 𝑣′𝑍(𝑍′𝑍)−1𝑍′𝑣

Looking at the individual terms
1
𝑁 𝜋′𝑍′𝑍𝜋 = 𝜋′Ξ𝜋 = 𝑂(1)

2
𝑁 𝜋′𝑍′𝑣 ∼ N(0, 4𝜎2

𝑣
𝑁2 𝜋′𝑍′𝑍𝜋)

= 2
√𝑁
N (0, 𝜎2

𝑣 𝜋′Ξ𝜋)

= 2
√𝑁
O𝑝(1) = O𝑝 ( 1

√𝑁
)

1
𝑁 𝑣′𝑃𝑍𝑣 ∼ 1

𝑁 𝜎2
𝑣 𝜒2(𝐿) = 1

𝑁 𝜎2
𝑣O𝑝(1) = O𝑝 ( 1

𝑁 ) = o𝑝 ( 1
√𝑁

)

Bottom line:
1
𝑁 𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋 ≈ 𝜋′Ξ𝜋
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Putting things together and applying an asymptotic approximation
from Hahn and Kuersteiner (2002)

For small 𝑟, they use: 1
𝜋′Ξ𝜋+𝑟 ≈ 1

𝜋′Ξ𝜋 − 1
(𝜋′Ξ𝜋)2 ⋅ 𝑟

We use: 1
𝜋′Ξ𝜋+𝑟 ≈ 1

𝜋′Ξ𝜋

Then

√𝑁( ̂𝛽2SLS − 𝛽) ≈
1

√𝑁
𝜋′𝑍′𝑒 + 1

√𝑁
𝑣′𝑃𝑍𝑒

𝜋′Ξ𝜋

Big picture: We want the study the expected value of ̂𝛽2SLS

We have done the hard work already, now we can derive the
expected value of the rhs

E(√𝑁( ̂𝛽2SLS − 𝛽)) ≈ E
⎛⎜⎜⎜⎜
⎝

1
√𝑁

𝜋′𝑍′𝑒 + 1
√𝑁

𝑣′𝑃𝑍𝑒

𝜋′Ξ𝜋
⎞⎟⎟⎟⎟
⎠

= 1
√𝑁

𝐿
𝜋′Ξ𝜋 𝜎𝑒𝑣
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We have successfully approximated the bias of the 2SLS estimator:

E ( ̂𝛽2SLS − 𝛽) ≈ 1
𝑁

𝐿
𝜋′Ξ𝜋 𝜎𝑒𝑣 = 𝐿

𝜋′𝑍′𝑍𝜋 𝜎𝑒𝑣 = 𝐿
𝜇2

𝜎𝑒𝑣
𝜎2𝑣

,

where 𝜇2 ∶= 𝜋′𝑍′𝑍𝜋/𝜎2
𝑣 is the concentration parameter

Aside: Hahn and Kuersteiner obtain E ( ̂𝛽2SLS − 𝛽) ≈ 𝐿−2
𝜇2

𝜎𝑒𝑣
𝜎2𝑣

Notice: Var (𝑋) ≈ 𝜋′𝑍′𝑍𝜋 + 𝜎2
𝑣

So the concentration parameter is the proportion of the variation in
𝑋 that is captured by the instruments

The concentration parameter is a measure of strength of the
instruments

If instruments are weak, in the sense of 𝜇2 ≈ 0, then we suspect a
large bias for the 2SLS estimator

We will pursue this further, both analytically and computationally
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