THE AUSTRALIAN NATIONAL UNIVERSITY

First Semester Final Examination-June, 2019

Advanced Econometrics I

(EMET 4314/8014)

Reading Time: 0 Minutes Writing Time: 120 Minutes

INSTRUCTIONS

- Answer all 4 questions of this handout
- Write on paper or an electronic device (such as an Ipad). Handwritten answers only! Do not type anything.
- If written on a piece of paper, scan your work and upload to Wattle.
- If using an electronic device, upload your file to Wattle.
- Provide complete, self-contained, and correct answers!
- Always show your work!
- Good luck!

EXAM QUESTIONS

1. [15 marks]

Let $Y_i = X'_i \beta + u_i$, where $E(u_i X_i) = 0$. Notice that dim $X_i = K \times 1$. You know that the solution to $\hat{\beta}^{OLS} := \underset{b \in \mathbb{R}^K}{\operatorname{argmin}} \sum_{i=1}^N (Y_i - X'_i b)^2$ is

$$\hat{\beta}^{\text{OLS}} = \left(\sum_{i=1}^{N} X_i X_i'\right)^{-1} \sum_{i=1}^{N} X_i Y_i.$$

Note: In your derivations for parts (a), (b), and (c), make use of the stochastic order symbols $o_p(1)$ and $O_p(1)$ wherever you can.

- (a) Derive the probability limit of $\hat{\beta}^{OLS}$.
- (b) Derive the asymptotic distribution of $\sqrt{N}(\hat{\beta}^{OLS} \beta)$ assuming homoskedasticity.
- (c) Suggest a consistent estimator for the asymptotic variance of $\sqrt{N}(\hat{\beta}^{\text{OLS}} \beta)$ under homoskedasticity. Prove that it is consistent.
- 2. [15 marks]

Are the following statements true or false? Provide a complete yet short explanation. Use mathematical derivations where necessary.

(Note: you will not receive any credit without providing a correct explanation.)

- (a) $\operatorname{Cov}(X, Y) = \operatorname{Cov}(X, \operatorname{E}(Y|X)).$
- (b) In the linear model, omitting explanatory variables does not necessarily lead to bias in the OLS estimator.
- (c) Any maximum likelihood estimator is also an M-estimator.
- (d) You have a random sample $Y_1, ..., Y_N$ with N > 3 and your goal is to estimate $E(Y_3)$. Consider the estimator $\hat{\theta} := Y_3$. That estimator is unbiased and efficient.
- (e) In a model with heterogeneous slope coefficients, we defined

LATE :=
$$\frac{\mathrm{E}(\beta_{1i} \cdot \pi_{1i})}{\mathrm{E}(\pi_{1i})}.$$

It can be shown that LATE = ATE.

3. [15 marks]

You have a random sample Y_1, \ldots, Y_N drawn from a *Poisson* distribution. The probability mass function of Y_i is

$$f_Y(y|\theta) = \frac{\theta^y \exp(-\theta)}{y!}, \quad \text{with } y = 0, 1, 2, \dots$$

It is known that $E(Y_i) = Var(Y_i) = \theta$.

- (a) Derive the likelihood function $\mathscr{L}(\theta|y_1, \ldots, y_N)$.
- (b) Derive the log likelihood function $L(\theta|y_1, ..., y_N)$.
- (c) Derive the score function $\partial \ln f_Y(y|\theta) / \partial \theta$.
- (d) Derive the maximum likelihood estimator $\hat{\theta}^{ML}$ of θ .
- (e) Derive $E(\hat{\theta}^{ML})$.
- (f) Derive Var $(\hat{\theta}^{ML})$.
- (g) Derive the Cramér Rao bound.
- (h) Is $\hat{\theta}^{ML}$ efficient?
- 4. [15 marks]
 - (a) [5 marks]

Consider Heckman's sample selection model

$$egin{aligned} Y_i^* &= X_i'eta + e_i \ D_i &= 1\cdot \left(Z_i'\gamma + v_i > 0
ight) , \end{aligned}$$

where, most generally, $X_i \neq Z_i$.

You do not observe Y_i^* . Instead, you observe a random sample (D_i, X_i, Y_i, Z_i) for i = 1, ..., N, where

$$Y_i := \begin{cases} Y_i^* & \text{if } D_i = 1\\ \text{unobserved} & \text{if } D_i = 0 \end{cases}$$

and your goal is to estimate β .

A naïve approach here would be to simply regress Y_i on X_i , ignoring possible sample selection. Let $\hat{\beta}^{OLS}$ be the estimator in a regression of Y_i on X_i . Prove or disprove: E $(\hat{\beta}^{OLS}|D_i = 1, X_i, Z_i) = \beta$.

To obtain useful results, you should impose additional assumptions in your derivation. These additional assumptions should be based on the discussion of the sample selection model in the lecture.

[Question 4 continues on next page]

(b) [10 marks]

Consider the censored regression model

$$Y_i^* = X_i'\beta + e_i,$$

where the errors e_i are iid draws from N(0,1). Alternatively, this model is called the *standard Tobit model* or *Type 1 Tobit model*.

You do not observe Y_i^* . Instead, you observe a random sample (X_i, Y_i) for i = 1, ..., N, where

$$Y_i := \begin{cases} Y_i^* & \text{if } Y_i^* \ge 0\\ 0 & \text{if } Y_i^* < 0, \end{cases}$$

and your goal is to estimate β via maximum likelihood.

Write down the log likelihood function $L(\beta | x_1, ..., x_N, y_1, ..., y_N)$.

End of Exam