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Ordinary Least Squares Estimation

Standard Errors and Confidence Intervals [last week?]



Why do we care about the distribution of gO?

Knowing the distribution helps us understand precision of the
estimate

In addition, people use the distribution to construct statistical tests

| prefer to focus on precision and ignore statistical testing



For the sake of illustration, let’s tentatively assume that
VN(BOL — B*) ~ N(0, )

The point here is that we assume that the normal distribution is
exact, not just an asymptotic approximation

Proposition
Let r be some K dimensional nonstochastic vector. Then
\/Kl(r’EOLS —7'B*) ~ N(0,7'Qr)

Corollary
7 R0LS __ %
u ~ N(0, 1)

Vr'Qr/N



You can pick r to consider any linear combination of the elements of
B* that you are interested in

Most times people use r = ¢, where e is the k-th unit vector taking
the value 1in position k and the value zero elsewhere

That way you are grabbing the kth element of a vector, or the (k, k)
element of a matrix

- Bi =€t = e
© Wik = E;CQE]{

TherengrSe oLs
k-~ Bk ep —ep”

\/wkk/N - \/el’(Qek/N

~ N(0,1)




The OLS estimator is a point estimator

It is unlikely that gL = g*
(in fact, that event has probability zero)

Instead of a point estimator, should we consider an interval
estimator?

Considerations:

- the smallest interval we would consider is g itself

- by having a proper interval, we can make sure that * is covered
with a probability larger than zero (unlike for point estimates)

- the largest interval covers the whole real line and guarantees a
100% coverage probability (not very informative though)

- there’s a tension between two goals:
high coverage probability vs narrow (informative) interval

Idea: accept a coverage probability that is a little less than 100%, say
95%, and hope to obtain an informative interval



BOLS_gx
Because ==—£ ~ N(0, 1),
= 0,1)

the obvious interval that comes to mind is [B,?LS +c- ,/a)kk/N]

This is symmetric around the point estimate because of the
symmetry of the normal distribution

A clever choice of ¢ will ensure a 95% coverage probability:

P (B € [BLY £1.96 - Jwi/N|) = 0.95

Careful! Don’t read this literally as
“the probability that g is in interval”

That's incorrect! It makes it sound as if B is a random variable
The random object is the interval [ A2 4 1.96 - \wy/N|

So the way to read the above statement is
“the probability that the interval covers ;"



Many people do not understand what a confidence interval can tell
them and what it cannot tell them

It means:
Prior to repeatedly estimating B,?LS in separate random experiments,
the probability is 95% that the random interval

[BOY° +1.96 - Jwyq/N| contains B
A frequentist’'s thought experiment: if | were given 100 random

samples of size N then about 95 of them will yield confidence
intervals that contain g5 (but | don’t know which ones)



Common misconceptions regarding confidence intervals

The following statements are all false

- The specific 95% confidence interval presented by a study has a
95% chance of containing the coefficient

- The true coefficient B; has a 95% probability of falling inside the
confidence interval

- A coefficient outside the 95% confidence interval is refuted by
the data
The first two in particular are believed by many people

Google: Statistical tests, P values, confidence intervals, and power: a
guide to misinterpretations, by Greenland at al, a worthwhile read



A few slides ago we tentatively assumed yVN(B°S — B*) ~ N(0, Q)
Now let's generalize by going back to \/KI(EOLS ) 9 N, Q)

It's easy to adjust earlier results accordingly, basically by replacing
'~ with "5’

Proposition

Let r be some K dimensional nonstochastic vector. Then
\/N(r’BOLS —7'B*) 9 NG, Or)

Corollary

T/ﬁOLS _ r/ﬁx— d

= N(0,1)
V' Qr/N



You may replace Q by O = Q + 0, (1):

Proposition
1 A0LS
u N(0,1)

\/r’Qr/N

Grabbing one element from that vector: b S

a)k /N

N(0, 1)

where @y := e,’(()ek

(this is a number that we can compute from the sample data)
The confidence interval for g therefore is [,E,?LS +1.96 - ,/(I)kk/N]

Terminology:
the term /@ /N is also called the asymptotic standard error of BO1°

Aside: by convention, an estimator of the standard deviation of an
estimator is called a standard error



Definition (Asymptotic Standard Error of 3°L5)

Let /N be the asymptotic variance of f°°. The asymptotic
standard errors of the OLS estimator g and g2 are

se(BO°) = ydiag (/N

se(BY) = e} - se(BO),
where Q/N is the estimator of the asymptotic variance of O

We obtain this result regarding the asymptotic coverage probability:
Proposition

dim P (B € [BY“ £1.96-se(B2)]) = 0.95



Ordinary Least Squares Estimation

Hypotheses Tests [last week?]



You study Y; = X;8* + u; where E (1;X;) =0

For simplicity X; is a scalar

For some reason you are interested in the value of g*
In particular, you want to know g* L0

You remember that OLS delivers a consistent estimator
You obtain g = 0.18

What do you do?



You consider two states of nature:

- pr=0

. Ig* +0
These are mutually exclusive and exhaustive
You can look at them as hypotheses

Definition (Statistical Hypothesis)
A statistical hypothesis is a statement about a population
parameter.

One is the null hypothesis, and one the alternative hypothesis
(of course denoted by H, and H;)

You would like to know which one is true
(if there is such a thing)



To determine which hypothesis is true, you propose:

if B> = 0 then p* = 0, else B* # 0
According to this decision rule, you decide that g* # 0
(because 0.18 # 0)

You have just conducted a hypothesis test

Definition
A statistical hypothesis test is a decision rule that specifies

(i) for which sample values Hy is considered true;
(i) for which sample values H; is considered true.



The hypothesis test
if B = 0 then B* = 0, else B* # 0

is not good because you will almost certainly conclude that g* # 0
This test is extremely conservative

You understand that B°% could be nonzero even if g* = 0

The estimator B°% is subject to sampling error

As sensible test should reflect this possibility of sampling error, and
therefore the variance of 8% should play a role too

If we are unable to quantify the exact variance of O, the
asymptotic variance will be good enough

The most common statistic to combine information of the point
estimate and its variance is the f-statistic



Definition (t-Statistic)
Let @ be an estimator and se(8) be its asymptotic standard error.

Then
té(e) =

66
se ()

is the t-statistic or t-ratio for 6.

It has the shape of the standardized estimator @
Let’s say we have two competing estimators, labelled B°% and BV
and we want to test if g* = 24

Then we would look at tB°L5(24) and tB‘V(24>



It should be clear that because g% = g* + 0,(1)
Egos (B9 S N(O, 1)

Software packages such as Stata have the terrible habit of reporting
tBOLS(O) as part of a standard regression output

tBOLS(O) facilitates a hypothesis test of the null f* = 0 against the
alternative B* # 0, the critical value is simply +1.96

It is not clear that the null 8* = 0 is interesting at all



There is an awful practice in applied econometrics to focus on the
value of t-statistics, or, equivalently, on significance stars

The vast majority of researchers present their estimation tables with
STATA significance stars

- |t| > 1.64 receives one star
- || > 1.96 receives two stars
- |t| > 2.58 receives three stars

It's like the Michelin restaurant guide: the more stars, the better!



For example, if the return to schooling is estimated to equal 0.14 and
it is statistically significant at the 95% level, then the table will say
0.14**

Many applied papers limit the discussion of their results only to
those coefficient estimates with stars attached, that is, only to those
who are statistically significant

Results that don’t have any stars are often ignored

Our average Monday seminar follows this pattern



Sadly, PhD students copy this terrible practice

| have had countless conversations with PhD students whose goal it
is to obtain stars in their tables

Because the opinion is: NO STARS, NO PAPER!
The research objective becomes: obtain stars

But often times stars are out of reach



Try do your estimations without stars or f-statistics
They are simplistic or reductionist

They seem to apply a binary world:
results are either statistically significant or irrelevant

(Also, they encourage star-hacking:
the strong incentive to obtain stars)

So what should you be doing?

What ought to be best practice?
(But admittedly and unfortunately isn't)



Report standard errors and confidence intervals
They offer a notion of precision of estimates

Also, never ever say this:

“The estimate is highly significance”

(or variations thereof)

It demonstrates that you don’t understand what you are doing

(Also: don't use STATA)



Ordinary Least Squares Estimation

Conditional Expectation Function



We have extensively studied projections of Y € L, on the space
spanned by X, ..., Xk € L,

This linear projection has the following minimization problem
representation:

Y:= argmin |Y—-Z|
Zesp(Xy,--, Xk)

= argmin||Y — (b; Xy + -+ + bgXp) ||
b

But why limit ourselves to the subspace sp(Xy, ..., Xg)?

How about this more flexible problem:
argmin||Y — g(Xy, ..., Xp)l,
geG

where G is the space of functions from RX - R with
Xy, ..., Xg) €L,



Clearly, the latter minimization problem contains the former
It plays an important role and gets a familiar label:

Definition (Conditional Expectation Function)
LetY, X, ..., Xx € L,. Let G be the space of functions from
RK — R with g(Xl/ "'/XK) E L2.
Then the conditional expectation function is defined by
E(Yle, /XK) = argmin ||Y _g(Xll ,XK)” 0
geG

Accordingly, the conditional expectation function is defined as a
projection of Y on the space of functions G

From the projection theorem we realize that E(Y|Xq, ..., Xx)

- exists
- is unique



We typically have available random variables Y; and random vectors

Define u(X;) := E(Y;1X;)
Notice that u(X;) € L,
We could definee; := Y; — u(X;)
This is referred to as the CEF error (or simply error term)
This implies the following representation: Y; = u(X;) +¢;
By definition
E(ei|Xi) = E(Yi - ,u(Xi)|Xi)
= E(Y{1X;) — E(u(X)1X;)
= u(X;) — u(Xy)
=0



By the law of iterated expectations: E(e;) = E(E(e;1X;)) =0

That is, the conditional mean equals the unconditional mean

This is called conditional mean independence

Similar to the case of the linear projection model, the statement
Y, =g(X;) +e, E(e;1X;) =0

is not restrictive at all

It tells you that the function g(X;) must be the CEF u(X;)

The CEF has a very important property



Pick arbitrary h € G, then with Y; = u(X;) +e;,
E((Y;—h(X)?)
= E(e; + (u(X;) — (X))
= E(ef) +2- E (e;(u(Xp) —h(X))) + E((u(Xy) —h(X;)?)
= E(e?) + E ((u(X;) —h(X;)?)
= [E ((Yi — V(Xi))z) +E ((,u(Xi) — h(Xi))z)
> E((Y; - pn(X))?)
notice, the third equality is an application of LIE:
Ee; (u(X;) —h(Xy))) = E((u(X;) = h(X;)) - E(e;1X;)) =0
The CEF u(X;) leads to minimal mean square error, so it's the best
predictor using MSE as criterion
When trying to explain Y; using X;

- u(X;) is the best predictor of Y;
in contrast:
- X(B* is the best linear predictor of Y;



Let’s turn to the practical implication next

If an oracle offered us either X;8* or u(X;) which one would you
prefer to have?

Similarly, if an oracle offered us either a good estimator of X;B* or a
good estimator of u(X;) which one would you prefer to have?

This raises the question:
What is our overall objective anyway?

Why are we running regressions?

I'm not sure that any group of econometricians (or economists)
could agree on a common objective

I'll dip my toe into the waters...

..many econometricians are interested in causal effects!



Ordinary Least Squares Estimation

Causal Effects



What is a causal effect?

As good econometricians, we must have some kind of economic
thinking that informs us about the relationship between variables

In other words, we have in mind some kind of structural economic
model

Definition (Structural Model)

Let Xy, ..., Xy be an exhaustive list of variables that explain Y.

A structural model is given by
Y = h(Xl, ...,XM),

where h(-) is a well behaved function.



Given a structural model, we are now in a position to define
precisely what we mean by causal effect

Definition (Causal Effect)

The causal effect of X; on the outcome variable Y in the structural
model Y = h(Xq, ..., Xp) IS

Oh(Xy, v s Xpp)

Ci(Xll"'/XM) = aX
1

ie{l,.. M}

Alternatively, we could call this a structural effect

Notice that the definition links the term 'causal effect’ to the idea of
the 'structural model’

Causality therefore is within a particular model
This definition applies for continuous X;

It's clear how one would tweak this to allow discrete X;



Can you know C;?

Three problems:

- you don't know h

- you don't know all the variables X;, ..., Xj; that should enter
the rhs,

(the known unknowns, and the unknown unknowns)
and even if you did

- you only observe iid copies of (X, ..., Xk)' for K <M

How can we help ourselves?



You observe iid copies of Y and X := (X, ..., Xk)'
You don't observe e := (X1, ---» Xp1)'

From your point of view, the structural model becomes Y = h(X,e)

(Aside: in the current subsection, the symbol X defines a
K x 1-vector, it will revert back to an N x K-matrix subsequently)



Knowing about the best predictor property of u, you consider
]x{(X) = E (h(XlerM)|X1//XK)
=E (h(X,e)|X)

= [h(X,e) -f(elX)de

and its partial derivative, fori =1, ..., K,

d[h(X,e)-f(elX)de

_(9nX,e) 9f (elX)
f( f(eX) + h(X,0) =5 ) e
X
=f(ci<X,e> f(elX) +h(X,e) f;i )> e

The first term gets its own name...



Definition (Average Causal Effect)
The average causal effect of X; on the outcome variable Y in the

structural model Y = h(Xy, ..., Xpp) is

ACE(X) = [ Ci(X, e) - (elX)de.

It follows that -
I(X)/0X; =ACE1-<X>+j<h<x,e> f;; )>de

i

What do we do with the second term on the rhs?



Copy and paste from last slide:

Op(X)/9X; = ACE;(X) + | (h(X,e) o ;;?Q ) de,

wherei=1,...,K
Recall that f(elX) = f(elXy, ..., Xk)

What would happen if the distribution of e conditional on
(X1, .-, Xi_1, Xi41, -, Xg) was independent of X;?

Thenf(€|X) =f(€|X1, ...,XK) :f(€|X1, ”’/Xi—1/Xi+1/"'/XK)

It follows that under conditional independence of (e|X)/0X; = 0 and
therefore du(X)/9X; = ACE;(X)

In words: small deviations of the conditional expectation function
identify average causal effects

(This is an important result, but please be aware that we had to pay
a high price: we imposed conditional independence)



Exploring some middle ground:
what if we knew that the structural function h was linear?

Thatis, if h(X,e) = X'B +e¢, then
u(X) = E(h(X,e)IX)
=E(X'B +elX)

= X'B +E (elX)

Studying the partial derivative:
ou(X)/0X; = 0X'B/9X; + ok (elX) /9X; = B; + 9E (elX) /9X;

What do we do with the second term on the rhs?



Copy and paste from previous slide:
u(X)/0X; = dX'B/dX; + OF (eIX) /0X; = B; + OE (elX) /IX;

Conditional mean independence: E(e|X) = E(e) =0

oE(e|X)
aX;

It follows that du(X)/9X; = B;

This implies =0
So the average causal effect is very simple

Conditional mean independence is a weaker restriction than
conditional independence

But we needed to accept the bargain that the structural function is
linear

This leads to the linear regression model...



Ordinary Least Squares Estimation

Linear Regression Model



Definition (Linear Regression Model)
Yi = Xz,ﬁ SCT E(eiIXi) =0
and EY? < oo and E | X,|* < .
The equality E(e;|X;) = 0 is called conditional mean independence
(CMmI) or exogeneity condition
It implies E(e;X;) = 0 because: E(e;X;) = E(X; - E(e;1X;)) =0

But not the other way round, eg: e; = Xl.2 with X; ~ N(0, 1)
(then E(e;X;) = E(X?) = 0 but clearly E(e;|X;) = E(X?|X;) = X? # 0)



In the linear regression model, because E(e;X;) = 0, we have

B =B = E(X;X)TEX;Y))

(provided E(X;X!) is invertible)

In a way, the linear regression model merely says that the projection
coefficient is also the structural coefficient of interest

Luckily we know a good estimator for g*: the OLS estimator



Ordinary Least Squares Estimation

Finite Sample Properties of the OLS Estimator



We've seen that E(g;]X;) = 0 is stronger (or more restrictive) than
E(e;X;) =0

So it shouldn't be too surprising that the CMI condtion enables us to
do new things

We can study the finite sample properties of the OLS estimator:

. E(ﬁOLS)
- Var (°5)

Last week we studied approximate mean and variance via the
asymptotic distribution

Today we are able to derive the exact mean and variance
(without the need to resort to the CLT)

The CMI condition makes this possible



Expected value

Rewrite
BOY = (X'X)71X'Y
= (X'X)"IX"(XB +e)
=B+ (X'X)"1Xe
(implicit definitions of vectors/matrices are the obvious ones)
So that O — B = (X'X)"1X"e
For some reason, people like when EBCL = g
If that were true then O is unbiased
We could make this happen by claiming E((X'X)~1X’e) = 0

But can we claim this?



Yes we can!

This follows readily using the law of iterated expectation:
E((X'X)71X’e) = E(E((X'X)"1X'e|X))
= E((X'X)"1X'E(elX))
=0

The CMI condition makes the OLS estimator unbiased



Conditional variance

Under CMI, EBC = B, and we get

Var (BOLS|X) = [ ((BOLS _ﬂ)(BOLS _ﬁ)!|X)
= E((X'X)"1X'ee’ X(X'X)71X)
= (X'X)"1X" - E(ee'1X) - X(X'X) "]

To make this look simpler, assume homoskedasticity:
Eee'|X) = o2l

It means that the error variances are not functions of X

It follows that Var (8°X) = c2(X'X)~!



Unconditional variance

Lemma (Variance Decomposition)
For P,Q € L,, Var P = EVar (PIQ) + Var E(P|Q)

Therefore

Var BO = EVar (B°°|X) + Var E(B°|X)

But the second term is zero (why?), thus
Var B8 = E (¢2(X'X)71)
=02 - E(X'X)7)

This is the unconditional variance under CMI and homoskedasticity



Ordinary Least Squares Estimation

Gauss Markov Theorem



Gauss Markov Theorem

Theorem (Gauss Markov Theorem)

In the linear regression model with homoskedastic errors, amongst
all linear estimators that are conditionally unbiased, B°% has the
lowest variance.

Some people say that OLS is BLUE:
best linear unbiased estimator
That's not very precise, what does "best’ refer to?

Answer: minimal variance



Sketch of proof
- let B:= C'Y be any other linear unbiased estimator
(where Cis a N x K-dimensional matrix based on X)
- similar to above, its conditional variance is Var (B|1X) = ¢2C'C
- define D" :=C' — (X’X)"1X’
- unbiasedness implies C'X = Ix
because: E(C'YIX) = E(C'(XB+e)IX) =C'XB=p
- therefore D'X = (C' — (X’X)"1X")X =0

- then
C/C — (D/ + (XrX)—lxr)(D/ + (X/X)—lxl)r — D/D-i- (X,X)_l
- it follows
Var (B1X) = 02C'C = 02 ((X'X)~' + D'D)

> o2(X'X)7!
= Var (B°°[X),

inequality because D'D is nonnegative definite (next slide)



Definition (Nonnegative definiteness)
A symmetric matrix P is nonnegative definite if g'Pq > 0 for all
vectors q.

Lemma
D'D is nonnegative definite.

Sketch of proof

D is an N x K matrix, so D'D is K x K

Take K x 1 vector g, then ¢'D'Dq = (¢'D")(Dgq) = (Dgq)"(Dgq) = 0
The rhs has the form #'r where ris N x 1

r'r is obviously nonnegative



A constructive proof of Gauss Markov Theorem
(from Amemiya’s textbook)

Let ﬁ := C'Y be any other linear unbiased estimator,
where Cis a N x K-dimensional matrix based on X

Under homoskedasticity, Var (/§|X) =02C'C

Unbiasedness implies C'X =1
because: E(C'YIX) = E(C"(XB+e)IX) =C'XB =P

Let's come up with some way of minimizing the variance given the
‘constraint’ that the estimator is unbiased

We set up a scalar minimization problem

For that, let p be an arbitrary K-vector
(its purpose is to pick any particular linear combination of 8



Instead of considering the vector 8 we look at the scalar p’8

If B =C'Y is an estimator of B,
then p'C'Y is the corresponding estimator of p'B

Define ¢ := Cp, so that p'C'Y = 'Y
and notice that unbiasedness implies X'c = X'Cp = p

Also, Var (p’ ,B|X) =Var (¢'Y|X) = oc'c

Our minimization problem is:

Minimize Var (¢"Y|X) subject to the unbiasedness constraint X'c = p
The corresponding Lagrangian is L(c,A) = ¢'c = 2" (X'c — p)

Next: take derivative with respect to ¢ and solve



Remember the following useful matrix derivative rules:

dAz d(z'Az) ,
— = A 5 (A+ A"z
Therefore,

a(c'c—2A"(X'c—p)) _

5 2c —2XA

Setting equal to zero results in ¢ = XA or, alternatively, X'c = X'XA

Using the constraint X'c = p gives X'XA = p or, alternatively,
A=X'X)"lp

And finally, c = XA = X(X'X)~!p, so that the minimum variance
unbiased estimator of p’'B turns out to be p'(X'X)~1X'Y



Ordinary Least Squares Estimation

Weighted and Generalized Least Squares Estimation



In the last assignment you have learned that the generalized least
squares estimator 5% is the minimum variance unbiased estimator
in the linear regression model under heteroskedasticity

This is a Gauss Markov theorem for the heteroskedastic case
But the derivation assumed knowledge of E(ee'|X)

In real life you don't have that knowledge, and B° is practically
useless, you cannot calculate it

For that reason we call %% the infeasible GLS estimator
There exists a feasible variant, but it isn’t used much

Let’s first revisit the GLS setup



Error variance was
Fee'|lX) =02 -T = c?-diag (71, ---,Yn)

=diag (¢2,...,0%) =: &
Define Y := 12y and X := I-1/2X

The GLS estimator is motivated as the OLS estimator of Y on X:
A o ORI
— (O AT
= X'z X)) Ix'z1ly

N -IN
= (Z Xixg/(r?) Y XYi/0?
i=1 i=1

Each observation is weighed inversely to its error variance

Hence the alternative name weighted least squares estimator



How could we turn infeasible GLS into a feasible estimator?
ldea: use & = X + 0,(1) in place of =
Where does this consistent variance estimator come from?

Easy: OLS will provide a consistent (yet inefficient) estimator of B
and therefore also of &

This suggests the following two step estimation approach:

(i) run OLS of Y on X, compute é and obtain £ by imposing some
structure on E(e?(X;), for example E(e?|X;) = o (X;) where o is
some known function

(i) compute BES = (X'E-1X)"1X'E-1y

Nobody uses this in practice, it's a textbook-only estimator
Feasible GLS does not satisfy the Gauss Markov theorem
(because using £ instead of X adds sampling error)
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