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Why do we care about the distribution of ̂𝛽OLS?

Knowing the distribution helps us understand precision of the
estimate

In addition, people use the distribution to construct statistical tests

I prefer to focus on precision and ignore statistical testing
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For the sake of illustration, let’s tentatively assume that
√𝑁( ̂𝛽OLS − 𝛽∗) ∼ N(0, Ω)

The point here is that we assume that the normal distribution is
exact, not just an asymptotic approximation

Proposition
Let 𝑟 be some 𝐾 dimensional nonstochastic vector. Then

√𝑁(𝑟′ ̂𝛽OLS − 𝑟′𝛽∗) ∼ N(0, 𝑟′Ω𝑟)

Corollary

𝑟′ ̂𝛽OLS − 𝑟′𝛽∗

√𝑟′Ω𝑟/𝑁
∼ N(0, 1)
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You can pick 𝑟 to consider any linear combination of the elements of
𝛽∗ that you are interested in

Most times people use 𝑟 = 𝑒𝑘 where 𝑒𝑘 is the 𝑘-th unit vector taking
the value 1 in position 𝑘 and the value zero elsewhere

That way you are grabbing the 𝑘th element of a vector, or the (𝑘, 𝑘)
element of a matrix

• 𝛽∗
𝑘 = 𝑒′

𝑘𝛽∗ = 𝛽∗′𝑒𝑘

• 𝜔𝑘𝑘 = 𝑒′
𝑘Ω𝑒𝑘

Therefore
̂𝛽OLS𝑘 − 𝛽∗

𝑘

√𝜔𝑘𝑘/𝑁
=

𝑒′
𝑘

̂𝛽OLS − 𝑒′
𝑘𝛽∗

√𝑒′
𝑘Ω𝑒𝑘/𝑁

∼ N(0, 1)
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The OLS estimator is a point estimator

It is unlikely that ̂𝛽OLS = 𝛽∗

(in fact, that event has probability zero)

Instead of a point estimator, should we consider an interval
estimator?

Considerations:

• the smallest interval we would consider is ̂𝛽OLS itself
• by having a proper interval, we can make sure that 𝛽∗ is covered
with a probability larger than zero (unlike for point estimates)

• the largest interval covers the whole real line and guarantees a
100% coverage probability (not very informative though)

• there’s a tension between two goals:
high coverage probability vs narrow (informative) interval

Idea: accept a coverage probability that is a little less than 100%, say
95%, and hope to obtain an informative interval
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Because
̂𝛽OLS𝑘 −𝛽∗

𝑘

√𝜔𝑘𝑘/𝑁
∼ N(0, 1),

the obvious interval that comes to mind is [ ̂𝛽OLS𝑘 ± 𝑐 ⋅ √𝜔𝑘𝑘/𝑁]

This is symmetric around the point estimate because of the
symmetry of the normal distribution

A clever choice of 𝑐 will ensure a 95% coverage probability:
𝑃 (𝛽∗

𝑘 ∈ [ ̂𝛽OLS𝑘 ± 1.96 ⋅ √𝜔𝑘𝑘/𝑁]) = 0.95

Careful! Don’t read this literally as
“the probability that 𝛽∗

𝑘 is in interval”

That’s incorrect! It makes it sound as if 𝛽∗
𝑘 is a random variable

The random object is the interval [ ̂𝛽OLS𝑘 ± 1.96 ⋅ √𝜔𝑘𝑘/𝑁]

So the way to read the above statement is
“the probability that the interval covers 𝛽∗

𝑘”
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Many people do not understand what a confidence interval can tell
them and what it cannot tell them

It means:
Prior to repeatedly estimating ̂𝛽OLS𝑘 in separate random experiments,
the probability is 95% that the random interval
[ ̂𝛽OLS𝑘 ± 1.96 ⋅ √𝜔𝑘𝑘/𝑁] contains 𝛽∗

𝑘

A frequentist’s thought experiment: if I were given 100 random
samples of size 𝑁 then about 95 of them will yield confidence
intervals that contain 𝛽∗

𝑘 (but I don’t know which ones)
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Common misconceptions regarding confidence intervals

The following statements are all false

• The specific 95% confidence interval presented by a study has a
95% chance of containing the coefficient

• The true coefficient 𝛽∗
𝑘 has a 95% probability of falling inside the

confidence interval
• A coefficient outside the 95% confidence interval is refuted by
the data

The first two in particular are believed by many people

Google: Statistical tests, P values, confidence intervals, and power: a
guide to misinterpretations, by Greenland at al, a worthwhile read
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A few slides ago we tentatively assumed √𝑁( ̂𝛽OLS − 𝛽∗) ∼ N(0, Ω)

Now let’s generalize by going back to √𝑁( ̂𝛽OLS − 𝛽∗) d→ N(0, Ω)

It’s easy to adjust earlier results accordingly, basically by replacing
’∼’ with ’ d→’

Proposition
Let 𝑟 be some 𝐾 dimensional nonstochastic vector. Then

√𝑁(𝑟′ ̂𝛽OLS − 𝑟′𝛽∗) d→ N(0, 𝑟′Ω𝑟)

Corollary

𝑟′ ̂𝛽OLS − 𝑟′𝛽∗

√𝑟′Ω𝑟/𝑁
d→ N(0, 1)
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You may replace Ω by Ω̂ = Ω + o𝑝(1):

Proposition

𝑟′ ̂𝛽OLS − 𝑟′𝛽∗

√𝑟′Ω̂𝑟/𝑁

d→ N(0, 1)

Grabbing one element from that vector:
̂𝛽OLS𝑘 −𝛽∗

𝑘

√𝜔̂𝑘𝑘/𝑁
d→ N(0, 1)

where 𝜔̂𝑘𝑘 ∶= 𝑒′
𝑘Ω̂𝑒𝑘

(this is a number that we can compute from the sample data)

The confidence interval for 𝛽∗
𝑘 therefore is [ ̂𝛽OLS𝑘 ± 1.96 ⋅ √𝜔̂𝑘𝑘/𝑁]

Terminology:
the term √𝜔̂𝑘𝑘/𝑁 is also called the asymptotic standard error of ̂𝛽OLS𝑘

Aside: by convention, an estimator of the standard deviation of an
estimator is called a standard error
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Definition (Asymptotic Standard Error of ̂𝛽OLS)

Let Ω/𝑁 be the asymptotic variance of ̂𝛽OLS. The asymptotic
standard errors of the OLS estimator ̂𝛽OLS and ̂𝛽OLS𝑘 are

se( ̂𝛽OLS) = √diag Ω̂/𝑁
se( ̂𝛽OLS𝑘 ) = 𝑒′

𝑘 ⋅ se( ̂𝛽OLS),

where Ω̂/𝑁 is the estimator of the asymptotic variance of ̂𝛽OLS

We obtain this result regarding the asymptotic coverage probability:

Proposition

lim
𝑁→∞

𝑃 (𝛽∗
𝑘 ∈ [ ̂𝛽OLS𝑘 ± 1.96 ⋅ se( ̂𝛽OLS𝑘 )]) = 0.95
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You study 𝑌𝑖 = 𝑋𝑖𝛽∗ + 𝑢𝑖 where E (𝑢𝑖𝑋𝑖) = 0

For simplicity 𝑋𝑖 is a scalar

For some reason you are interested in the value of 𝛽∗

In particular, you want to know 𝛽∗ ?= 0

You remember that OLS delivers a consistent estimator

You obtain ̂𝛽OLS = 0.18

What do you do?
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You consider two states of nature:

• 𝛽∗ = 0
• 𝛽∗ ≠ 0

These are mutually exclusive and exhaustive

You can look at them as hypotheses

Definition (Statistical Hypothesis)
A statistical hypothesis is a statement about a population
parameter.

One is the null hypothesis, and one the alternative hypothesis
(of course denoted by 𝐻0 and 𝐻1)

You would like to know which one is true
(if there is such a thing)

15 / 61



To determine which hypothesis is true, you propose:

if ̂𝛽OLS = 0 then 𝛽∗ = 0, else 𝛽∗ ≠ 0

According to this decision rule, you decide that 𝛽∗ ≠ 0
(because 0.18 ≠ 0)

You have just conducted a hypothesis test

Definition
A statistical hypothesis test is a decision rule that specifies

(i) for which sample values 𝐻0 is considered true;
(ii) for which sample values 𝐻1 is considered true.
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The hypothesis test

if ̂𝛽OLS = 0 then 𝛽∗ = 0, else 𝛽∗ ≠ 0

is not good because you will almost certainly conclude that 𝛽∗ ≠ 0

This test is extremely conservative

You understand that ̂𝛽OLS could be nonzero even if 𝛽∗ = 0

The estimator ̂𝛽OLS is subject to sampling error

As sensible test should reflect this possibility of sampling error, and
therefore the variance of ̂𝛽OLS should play a role too

If we are unable to quantify the exact variance of ̂𝛽OLS, the
asymptotic variance will be good enough

The most common statistic to combine information of the point
estimate and its variance is the 𝑡-statistic

17 / 61



Definition (𝑡-Statistic)
Let ̂𝜃 be an estimator and se( ̂𝜃) be its asymptotic standard error.
Then

𝑡 ̂𝜃(𝜃) ∶=
̂𝜃 − 𝜃

se( ̂𝜃)

is the 𝑡-statistic or 𝑡-ratio for 𝜃.

It has the shape of the standardized estimator ̂𝜃

Let’s say we have two competing estimators, labelled ̂𝛽OLS and ̂𝛽IV

and we want to test if 𝛽∗ = 24

Then we would look at 𝑡 ̂𝛽OLS(24) and 𝑡 ̂𝛽IV(24)
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It should be clear that because ̂𝛽OLS = 𝛽∗ + o𝑝(1)
𝑡 ̂𝛽OLS(𝛽∗) d→ N(0, 1)

Software packages such as Stata have the terrible habit of reporting
𝑡 ̂𝛽OLS(0) as part of a standard regression output

𝑡 ̂𝛽OLS(0) facilitates a hypothesis test of the null 𝛽∗ = 0 against the
alternative 𝛽∗ ≠ 0, the critical value is simply ±1.96

It is not clear that the null 𝛽∗ = 0 is interesting at all
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There is an awful practice in applied econometrics to focus on the
value of 𝑡-statistics, or, equivalently, on significance stars

The vast majority of researchers present their estimation tables with
STATA significance stars

• |𝑡| > 1.64 receives one star
• |𝑡| > 1.96 receives two stars
• |𝑡| > 2.58 receives three stars

It’s like the Michelin restaurant guide: the more stars, the better!
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For example, if the return to schooling is estimated to equal 0.14 and
it is statistically significant at the 95% level, then the table will say
0.14∗∗

Many applied papers limit the discussion of their results only to
those coefficient estimates with stars attached, that is, only to those
who are statistically significant

Results that don’t have any stars are often ignored

Our average Monday seminar follows this pattern
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Sadly, PhD students copy this terrible practice

I have had countless conversations with PhD students whose goal it
is to obtain stars in their tables

Because the opinion is: No Stars, No Paper!

The research objective becomes: obtain stars

But often times stars are out of reach
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Try do your estimations without stars or 𝑡-statistics

They are simplistic or reductionist

They seem to apply a binary world:
results are either statistically significant or irrelevant

(Also, they encourage star-hacking:
the strong incentive to obtain stars)

So what should you be doing?

What ought to be best practice?
(But admittedly and unfortunately isn’t)
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Report standard errors and confidence intervals

They offer a notion of precision of estimates

Also, never ever say this:
“The estimate is highly significance”
(or variations thereof)
It demonstrates that you don’t understand what you are doing

(Also: don’t use STATA)
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We have extensively studied projections of 𝑌 ∈ 𝐿2 on the space
spanned by 𝑋1, … , 𝑋𝐾 ∈ 𝐿2

This linear projection has the following minimization problem
representation:

𝑌 ∶= argmin
𝑍∈sp(𝑋1,…,𝑋𝐾)

∥𝑌 − 𝑍∥

= argmin
𝑏1,…,𝑏𝐾

∥𝑌 − (𝑏1𝑋1 + ⋯ + 𝑏𝐾𝑋𝐾)∥

But why limit ourselves to the subspace sp(𝑋1, … , 𝑋𝐾)?

How about this more flexible problem:
argmin

𝑔∈𝐺
∥𝑌 − 𝑔(𝑋1, … , 𝑋𝐾)∥ ,

where 𝐺 is the space of functions from R𝐾 → R with
𝑔(𝑋1, … , 𝑋𝐾) ∈ 𝐿2
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Clearly, the latter minimization problem contains the former

It plays an important role and gets a familiar label:

Definition (Conditional Expectation Function)
Let 𝑌, 𝑋1, … , 𝑋𝐾 ∈ 𝐿2. Let 𝐺 be the space of functions from
R𝐾 → R with 𝑔(𝑋1, … , 𝑋𝐾) ∈ 𝐿2.

Then the conditional expectation function is defined by
E(𝑌|𝑋1, … , 𝑋𝐾) ∶= argmin

𝑔∈𝐺
∥𝑌 − 𝑔(𝑋1, … , 𝑋𝐾)∥ .

Accordingly, the conditional expectation function is defined as a
projection of 𝑌 on the space of functions 𝐺

From the projection theorem we realize that E(𝑌|𝑋1, … , 𝑋𝐾)

• exists
• is unique
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We typically have available random variables 𝑌𝑖 and random vectors
𝑋𝑖 with dim(𝑋𝑖) = 𝐾 × 1

Define 𝜇(𝑋𝑖) ∶= E(𝑌𝑖|𝑋𝑖)

Notice that 𝜇(𝑋𝑖) ∈ 𝐿2

We could define 𝑒𝑖 ∶= 𝑌𝑖 − 𝜇(𝑋𝑖)

This is referred to as the CEF error (or simply error term)

This implies the following representation: 𝑌𝑖 = 𝜇(𝑋𝑖) + 𝑒𝑖

By definition
E(𝑒𝑖|𝑋𝑖) = E(𝑌𝑖 − 𝜇(𝑋𝑖)|𝑋𝑖)

= E(𝑌𝑖|𝑋𝑖) − E(𝜇(𝑋𝑖)|𝑋𝑖)
= 𝜇(𝑋𝑖) − 𝜇(𝑋𝑖)
= 0
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By the law of iterated expectations: E(𝑒𝑖) = E(E(𝑒𝑖|𝑋𝑖)) = 0

That is, the conditional mean equals the unconditional mean

This is called conditional mean independence

Similar to the case of the linear projection model, the statement
𝑌𝑖 = 𝑔(𝑋𝑖) + 𝑒𝑖, E(𝑒𝑖|𝑋𝑖) = 0

is not restrictive at all

It tells you that the function 𝑔(𝑋𝑖) must be the CEF 𝜇(𝑋𝑖)

The CEF has a very important property
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Pick arbitrary ℎ ∈ 𝐺, then with 𝑌𝑖 = 𝜇(𝑋𝑖) + 𝑒𝑖,
E ((𝑌𝑖 − ℎ(𝑋𝑖))2)

= E (𝑒𝑖 + (𝜇(𝑋𝑖) − ℎ(𝑋𝑖)))2

= E(𝑒2
𝑖 ) + 2 ⋅ E (𝑒𝑖(𝜇(𝑋𝑖) − ℎ(𝑋𝑖))) + E ((𝜇(𝑋𝑖) − ℎ(𝑋𝑖))2)

= E(𝑒2
𝑖 ) + E ((𝜇(𝑋𝑖) − ℎ(𝑋𝑖))2)

= E ((𝑌𝑖 − 𝜇(𝑋𝑖))2) + E ((𝜇(𝑋𝑖) − ℎ(𝑋𝑖))2)

≥ E ((𝑌𝑖 − 𝜇(𝑋𝑖))2)

notice, the third equality is an application of LIE:
E(𝑒𝑖(𝜇(𝑋𝑖) − ℎ(𝑋𝑖))) = E((𝜇(𝑋𝑖) − ℎ(𝑋𝑖)) ⋅ E(𝑒𝑖|𝑋𝑖)) = 0

The CEF 𝜇(𝑋𝑖) leads to minimal mean square error, so it’s the best
predictor using MSE as criterion

When trying to explain 𝑌𝑖 using 𝑋𝑖

• 𝜇(𝑋𝑖) is the best predictor of 𝑌𝑖
in contrast:

• 𝑋′
𝑖𝛽∗ is the best linear predictor of 𝑌𝑖
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Let’s turn to the practical implication next

If an oracle offered us either 𝑋′
𝑖𝛽∗ or 𝜇(𝑋𝑖) which one would you

prefer to have?

Similarly, if an oracle offered us either a good estimator of 𝑋′
𝑖𝛽∗ or a

good estimator of 𝜇(𝑋𝑖) which one would you prefer to have?

This raises the question:
What is our overall objective anyway?

Why are we running regressions?

I’m not sure that any group of econometricians (or economists)
could agree on a common objective

I’ll dip my toe into the waters…

…many econometricians are interested in causal effects!
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What is a causal effect?

As good econometricians, we must have some kind of economic
thinking that informs us about the relationship between variables

In other words, we have in mind some kind of structural economic
model

Definition (Structural Model)
Let 𝑋1, … , 𝑋𝑀 be an exhaustive list of variables that explain 𝑌.
A structural model is given by

𝑌 = ℎ(𝑋1, … , 𝑋𝑀),

where ℎ(⋅) is a well behaved function.
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Given a structural model, we are now in a position to define
precisely what we mean by causal effect

Definition (Causal Effect)
The causal effect of 𝑋𝑖 on the outcome variable 𝑌 in the structural
model 𝑌 = ℎ(𝑋1, … , 𝑋𝑀) is

𝐶𝑖(𝑋1, … , 𝑋𝑀) ∶=
𝜕ℎ(𝑋1, … , 𝑋𝑀)

𝜕𝑋𝑖
𝑖 ∈ {1, … , 𝑀}

Alternatively, we could call this a structural effect

Notice that the definition links the term ’causal effect’ to the idea of
the ’structural model’

Causality therefore is within a particular model

This definition applies for continuous 𝑋𝑖

It’s clear how one would tweak this to allow discrete 𝑋𝑖
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Can you know 𝐶𝑖?

Three problems:

• you don’t know ℎ
• you don’t know all the variables 𝑋1, … , 𝑋𝑀 that should enter
the rhs,
(the known unknowns, and the unknown unknowns)
and even if you did

• you only observe iid copies of (𝑋1, … , 𝑋𝐾)′ for 𝐾 < 𝑀

How can we help ourselves?
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You observe iid copies of 𝑌 and 𝑋 ∶= (𝑋1, … , 𝑋𝐾)′

You don’t observe 𝑒 ∶= (𝑋𝐾+1, … , 𝑋𝑀)′

From your point of view, the structural model becomes 𝑌 = ℎ(𝑋, 𝑒)

(Aside: in the current subsection, the symbol 𝑋 defines a
𝐾 × 1-vector, it will revert back to an 𝑁 × 𝐾-matrix subsequently)
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Knowing about the best predictor property of 𝜇, you consider
𝜇(𝑋) = E (ℎ(𝑋1, … , 𝑋𝑀)|𝑋1, … , 𝑋𝐾)

= E (ℎ(𝑋, 𝑒)|𝑋)

= ∫ ℎ(𝑋, 𝑒) ⋅ 𝑓 (𝑒|𝑋)𝑑𝑒

and its partial derivative, for 𝑖 = 1, … , 𝐾,

𝜕𝜇(𝑋)/𝜕𝑋𝑖 =
𝜕 ∫ ℎ(𝑋, 𝑒) ⋅ 𝑓 (𝑒|𝑋)𝑑𝑒

𝜕𝑋𝑖

= ∫ (
𝜕ℎ(𝑋, 𝑒)

𝜕𝑋𝑖
𝑓 (𝑒|𝑋) + ℎ(𝑋, 𝑒)

𝜕𝑓 (𝑒|𝑋)
𝜕𝑋𝑖

) 𝑑𝑒

= ∫ (𝐶𝑖(𝑋, 𝑒) ⋅ 𝑓 (𝑒|𝑋) + ℎ(𝑋, 𝑒)
𝜕𝑓 (𝑒|𝑋)

𝜕𝑋𝑖
) 𝑑𝑒

The first term gets its own name…
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Definition (Average Causal Effect)
The average causal effect of 𝑋𝑖 on the outcome variable 𝑌 in the
structural model 𝑌 = ℎ(𝑋1, … , 𝑋𝑀) is

𝐴𝐶𝐸𝑖(𝑋) ∶= ∫ 𝐶𝑖(𝑋, 𝑒) ⋅ 𝑓 (𝑒|𝑋)𝑑𝑒.

It follows that
𝜕𝜇(𝑋)/𝜕𝑋𝑖 = 𝐴𝐶𝐸𝑖(𝑋) + ∫ (ℎ(𝑋, 𝑒)

𝜕𝑓 (𝑒|𝑋)
𝜕𝑋𝑖

) 𝑑𝑒

What do we do with the second term on the rhs?
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Copy and paste from last slide:

𝜕𝜇(𝑋)/𝜕𝑋𝑖 = 𝐴𝐶𝐸𝑖(𝑋) + ∫ (ℎ(𝑋, 𝑒)
𝜕𝑓 (𝑒|𝑋)

𝜕𝑋𝑖
) 𝑑𝑒,

where 𝑖 = 1, … , 𝐾

Recall that 𝑓 (𝑒|𝑋) = 𝑓 (𝑒|𝑋1, … , 𝑋𝐾)

What would happen if the distribution of 𝑒 conditional on
(𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1, … , 𝑋𝐾) was independent of 𝑋𝑖?

Then 𝑓 (𝑒|𝑋) = 𝑓 (𝑒|𝑋1, … , 𝑋𝐾) = 𝑓 (𝑒|𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1, … , 𝑋𝐾)

It follows that under conditional independence 𝜕𝑓 (𝑒|𝑋)/𝜕𝑋𝑖 = 0 and
therefore 𝜕𝜇(𝑋)/𝜕𝑋𝑖 = 𝐴𝐶𝐸𝑖(𝑋)

In words: small deviations of the conditional expectation function
identify average causal effects

(This is an important result, but please be aware that we had to pay
a high price: we imposed conditional independence)
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Exploring some middle ground:
what if we knew that the structural function ℎ was linear?

That is, if ℎ(𝑋, 𝑒) = 𝑋′𝛽 + 𝑒, then

𝜇(𝑋) = E (ℎ(𝑋, 𝑒)|𝑋)
= E (𝑋′𝛽 + 𝑒|𝑋)
= 𝑋′𝛽 + E (𝑒|𝑋)

Studying the partial derivative:
𝜕𝜇(𝑋)/𝜕𝑋𝑖 = 𝜕𝑋′𝛽/𝜕𝑋𝑖 + 𝜕E (𝑒|𝑋) /𝜕𝑋𝑖 = 𝛽𝑖 + 𝜕E (𝑒|𝑋) /𝜕𝑋𝑖

What do we do with the second term on the rhs?
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Copy and paste from previous slide:
𝜕𝜇(𝑋)/𝜕𝑋𝑖 = 𝜕𝑋′𝛽/𝜕𝑋𝑖 + 𝜕E (𝑒|𝑋) /𝜕𝑋𝑖 = 𝛽𝑖 + 𝜕E (𝑒|𝑋) /𝜕𝑋𝑖

Conditional mean independence: E(𝑒|𝑋) = E(𝑒) = 0

This implies 𝜕E(𝑒|𝑋)
𝜕𝑋𝑖

= 0

It follows that 𝜕𝜇(𝑋)/𝜕𝑋𝑖 = 𝛽𝑖

So the average causal effect is very simple

Conditional mean independence is a weaker restriction than
conditional independence

But we needed to accept the bargain that the structural function is
linear

This leads to the linear regression model…
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Definition (Linear Regression Model)

𝑌𝑖 = 𝑋′
𝑖𝛽 + 𝑒𝑖, E(𝑒𝑖|𝑋𝑖) = 0

and E𝑌2
𝑖 < ∞ and E ∥𝑋𝑖∥

2 < ∞.

The equality 𝐸(𝑒𝑖|𝑋𝑖) = 0 is called conditional mean independence
(CMI) or exogeneity condition

It implies E(𝑒𝑖𝑋𝑖) = 0 because: E(𝑒𝑖𝑋𝑖) = E(𝑋𝑖 ⋅ E(𝑒𝑖|𝑋𝑖)) = 0

But not the other way round, eg: 𝑒𝑖 = 𝑋2
𝑖 with 𝑋𝑖 ∼ N(0, 1)

(then E(𝑒𝑖𝑋𝑖) = E(𝑋3
𝑖 ) = 0 but clearly E(𝑒𝑖|𝑋𝑖) = E(𝑋2

𝑖 |𝑋𝑖) = 𝑋2
𝑖 ≠ 0)
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In the linear regression model, because E(𝑒𝑖𝑋𝑖) = 0, we have
𝛽 = 𝛽∗ = E(𝑋𝑖𝑋′

𝑖)−1E(𝑋𝑖𝑌𝑖)
(provided E(𝑋𝑖𝑋′

𝑖) is invertible)

In a way, the linear regression model merely says that the projection
coefficient is also the structural coefficient of interest

Luckily we know a good estimator for 𝛽∗: the OLS estimator

44 / 61



Roadmap

Ordinary Least Squares Estimation

Standard Errors and Confidence Intervals [last week?]

Hypotheses Tests [last week?]

Conditional Expectation Function

Causal Effects

Linear Regression Model

Finite Sample Properties of the OLS Estimator

Gauss Markov Theorem

Weighted and Generalized Least Squares Estimation

45 / 61



We’ve seen that E(𝑒𝑖|𝑋𝑖) = 0 is stronger (or more restrictive) than
E(𝑒𝑖𝑋𝑖) = 0

So it shouldn’t be too surprising that the CMI condtion enables us to
do new things

We can study the finite sample properties of the OLS estimator:

• E( ̂𝛽OLS)
• Var ( ̂𝛽OLS)

Last week we studied approximate mean and variance via the
asymptotic distribution

Today we are able to derive the exact mean and variance
(without the need to resort to the CLT)

The CMI condition makes this possible
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Expected value

Rewrite
̂𝛽OLS = (𝑋′𝑋)−1𝑋′𝑌

= (𝑋′𝑋)−1𝑋′(𝑋𝛽 + 𝑒)
= 𝛽 + (𝑋′𝑋)−1𝑋′𝑒

(implicit definitions of vectors/matrices are the obvious ones)

So that ̂𝛽OLS − 𝛽 = (𝑋′𝑋)−1𝑋′𝑒

For some reason, people like when E ̂𝛽OLS = 𝛽

If that were true then ̂𝛽OLS is unbiased

We could make this happen by claiming E((𝑋′𝑋)−1𝑋′𝑒) = 0

But can we claim this?
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Yes we can!

This follows readily using the law of iterated expectation:
E ((𝑋′𝑋)−1𝑋′𝑒) = E (E ((𝑋′𝑋)−1𝑋′𝑒|𝑋))

= E ((𝑋′𝑋)−1𝑋′E(𝑒|𝑋))
= 0

The CMI condition makes the OLS estimator unbiased
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Conditional variance

Under CMI, E ̂𝛽OLS = 𝛽, and we get

Var ( ̂𝛽OLS|𝑋) = E (( ̂𝛽OLS − 𝛽)( ̂𝛽OLS − 𝛽)′|𝑋)

= E ((𝑋′𝑋)−1𝑋′𝑒𝑒′𝑋(𝑋′𝑋)−1|𝑋)
= (𝑋′𝑋)−1𝑋′ ⋅ E(𝑒𝑒′|𝑋) ⋅ 𝑋(𝑋′𝑋)−1

To make this look simpler, assume homoskedasticity:
E(𝑒𝑒′|𝑋) = 𝜎2

𝑒 𝐼𝑁

It means that the error variances are not functions of 𝑋

It follows that Var ( ̂𝛽OLS|𝑋) = 𝜎2
𝑒 (𝑋′𝑋)−1
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Unconditional variance

Lemma (Variance Decomposition)
For 𝑃, 𝑄 ∈ 𝐿2, Var 𝑃 = EVar (𝑃|𝑄) + Var E(𝑃|𝑄)

Therefore

Var ̂𝛽OLS = EVar ( ̂𝛽OLS|𝑋) + Var E( ̂𝛽OLS|𝑋)

But the second term is zero (why?), thus

Var ̂𝛽OLS = E (𝜎2
𝑒 (𝑋′𝑋)−1)

= 𝜎2
𝑒 ⋅ E((𝑋′𝑋)−1)

This is the unconditional variance under CMI and homoskedasticity
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Gauss Markov Theorem

Theorem (Gauss Markov Theorem)
In the linear regression model with homoskedastic errors, amongst
all linear estimators that are conditionally unbiased, ̂𝛽OLS has the
lowest variance.

Some people say that OLS is BLUE:
best linear unbiased estimator

That’s not very precise, what does ’best’ refer to?

Answer: minimal variance

52 / 61



Sketch of proof

• let ̃𝛽 ∶= 𝐶′𝑌 be any other linear unbiased estimator
(where 𝐶 is a 𝑁 × 𝐾-dimensional matrix based on 𝑋)

• similar to above, its conditional variance is Var ( ̃𝛽|𝑋) = 𝜎2
𝑒 𝐶′𝐶

• define 𝐷′ ∶= 𝐶′ − (𝑋′𝑋)−1𝑋′

• unbiasedness implies 𝐶′𝑋 = 𝐼𝐾
because: E(𝐶′𝑌|𝑋) = E(𝐶′(𝑋𝛽 + 𝑒)|𝑋) = 𝐶′𝑋𝛽 = 𝛽

• therefore 𝐷′𝑋 = (𝐶′ − (𝑋′𝑋)−1𝑋′)𝑋 = 0
• then

𝐶′𝐶 = (𝐷′ + (𝑋′𝑋)−1𝑋′)(𝐷′ + (𝑋′𝑋)−1𝑋′)′ = 𝐷′𝐷 + (𝑋′𝑋)−1

• it follows
Var ( ̃𝛽|𝑋) = 𝜎2

𝑒 𝐶′𝐶 = 𝜎2
𝑒 ((𝑋′𝑋)−1 + 𝐷′𝐷)

≥ 𝜎2
𝑒 (𝑋′𝑋)−1

= Var ( ̂𝛽OLS|𝑋),

inequality because 𝐷′𝐷 is nonnegative definite (next slide)
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Definition (Nonnegative definiteness)
A symmetric matrix P is nonnegative definite if 𝑞′𝑃𝑞 ≥ 0 for all
vectors 𝑞.

Lemma
𝐷′𝐷 is nonnegative definite.

Sketch of proof

𝐷 is an 𝑁 × 𝐾 matrix, so 𝐷′𝐷 is 𝐾 × 𝐾

Take 𝐾 × 1 vector q, then 𝑞′𝐷′𝐷𝑞 = (𝑞′𝐷′)(𝐷𝑞) = (𝐷𝑞)′(𝐷𝑞) ≥ 0

The rhs has the form 𝑟′𝑟 where 𝑟 is 𝑁 × 1

𝑟′𝑟 is obviously nonnegative
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A constructive proof of Gauss Markov Theorem
(from Amemiya’s textbook)

Let ̃𝛽 ∶= 𝐶′𝑌 be any other linear unbiased estimator,
where 𝐶 is a 𝑁 × 𝐾-dimensional matrix based on 𝑋

Under homoskedasticity, Var ( ̃𝛽|𝑋) = 𝜎2
𝑒 𝐶′𝐶

Unbiasedness implies 𝐶′𝑋 = 𝐼
because: E(𝐶′𝑌|𝑋) = E(𝐶′(𝑋𝛽 + 𝑒)|𝑋) = 𝐶′𝑋𝛽 = 𝛽

Let’s come up with some way of minimizing the variance given the
‘constraint’ that the estimator is unbiased

We set up a scalar minimization problem

For that, let 𝑝 be an arbitrary 𝐾-vector
(its purpose is to pick any particular linear combination of ̃𝛽
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Instead of considering the vector ̃𝛽 we look at the scalar 𝑝′ ̃𝛽

If ̃𝛽 = 𝐶′𝑌 is an estimator of 𝛽,
then 𝑝′𝐶′𝑌 is the corresponding estimator of 𝑝′𝛽

Define 𝑐 ∶= 𝐶𝑝, so that 𝑝′𝐶′𝑌 = 𝑐′𝑌
and notice that unbiasedness implies 𝑋′𝑐 = 𝑋′𝐶𝑝 = 𝑝

Also, Var (𝑝′ ̃𝛽|𝑋) = Var (𝑐′𝑌|𝑋) = 𝜎2
𝑒 𝑐′𝑐

Our minimization problem is:

Minimize Var (𝑐′𝑌|𝑋) subject to the unbiasedness constraint 𝑋′𝑐 = 𝑝

The corresponding Lagrangian is 𝐿(𝑐, 𝜆) = 𝑐′𝑐 − 2𝜆′(𝑋′𝑐 − 𝑝)

Next: take derivative with respect to 𝑐 and solve
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Remember the following useful matrix derivative rules:

𝜕𝐴𝑧
𝜕𝑧 = 𝐴′ 𝜕(𝑧′𝐴𝑧)

𝜕𝑧 = (𝐴 + 𝐴′)𝑧

Therefore,

𝜕(𝑐′𝑐 − 2𝜆′(𝑋′𝑐 − 𝑝))
𝜕𝑐 = 2𝑐 − 2𝑋𝜆

Setting equal to zero results in 𝑐 = 𝑋𝜆 or, alternatively, 𝑋′𝑐 = 𝑋′𝑋𝜆

Using the constraint 𝑋′𝑐 = 𝑝 gives 𝑋′𝑋𝜆 = 𝑝 or, alternatively,
𝜆 = (𝑋′𝑋)−1𝑝

And finally, 𝑐 = 𝑋𝜆 = 𝑋(𝑋′𝑋)−1𝑝, so that the minimum variance
unbiased estimator of 𝑝′𝛽 turns out to be 𝑝′(𝑋′𝑋)−1𝑋′𝑌
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In the last assignment you have learned that the generalized least
squares estimator ̂𝛽GLS is the minimum variance unbiased estimator
in the linear regression model under heteroskedasticity

This is a Gauss Markov theorem for the heteroskedastic case

But the derivation assumed knowledge of E(𝑒𝑒′|𝑋)

In real life you don’t have that knowledge, and ̂𝛽GLS is practically
useless, you cannot calculate it

For that reason we call ̂𝛽GLS the infeasible GLS estimator

There exists a feasible variant, but it isn’t used much

Let’s first revisit the GLS setup
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Error variance was
E(𝑒𝑒′|𝑋) = 𝜎2 ⋅ Γ = 𝜎2 ⋅ diag (𝛾1, … , 𝛾𝑁)

= diag (𝜎2
1 , … , 𝜎2

𝑁) =∶ Σ

Define 𝑌̃ ∶= Γ−1/2𝑌 and 𝑋̃ ∶= Γ−1/2𝑋

The GLS estimator is motivated as the OLS estimator of 𝑌̃ on 𝑋̃:
̂𝛽GLS ∶= (𝑋̃′𝑋̃)−1𝑋̃′𝑌̃

= (𝑋′Γ−1𝑋)−1𝑋′Γ−1𝑌
= (𝑋′Σ−1𝑋)−1𝑋′Σ−1𝑌

= ⎛⎜
⎝

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖/𝜎2

𝑖
⎞⎟
⎠

−1 𝑁
∑
𝑖=1

𝑋𝑖𝑌𝑖/𝜎2
𝑖

Each observation is weighed inversely to its error variance

Hence the alternative name weighted least squares estimator
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How could we turn infeasible GLS into a feasible estimator?

Idea: use Σ̂ = Σ + o𝑝(1) in place of Σ

Where does this consistent variance estimator come from?

Easy: OLS will provide a consistent (yet inefficient) estimator of 𝛽
and therefore also of Σ

This suggests the following two step estimation approach:

(i) run OLS of 𝑌 on 𝑋, compute ̂𝑒 and obtain Σ̂ by imposing some
structure on E(𝑒2

𝑖 |𝑋𝑖), for example E(𝑒2
𝑖 |𝑋𝑖) = 𝜎(𝑋𝑖) where 𝜎 is

some known function
(ii) compute ̂𝛽GLSfeas ∶= (𝑋′Σ̂−1𝑋)−1𝑋′Σ̂−1𝑌

Nobody uses this in practice, it’s a textbook-only estimator

Feasible GLS does not satisfy the Gauss Markov theorem
(because using Σ̂ instead of Σ adds sampling error)
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