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Ordinary Least Squares Estimation

Basic Asymptotic Theory (part 2 of 2)



Let there be a probability space (Q), F, P)

- Q) is the outcome space
- F collects events from Q
- Pis a probability measure on F

Example (Only Looks Like Rolling a Die)
-0 ={1,2,3,4,5,6}
- F={{13,5},{2,4,6},Q,0}

- Considerall A e F
0 ifA=0
P(A) = 1/2 I'fA = {1,3,5)
1/2 ifA=1{24,6)

1 ifA=0Q

Notice that P({2}) is not specified



Definition (Random Variable—first attempt)
A random variable on (Q, F) is a function Z : ) - R.

Example

18 if weven,

X(w) =
{24 if wodd

Induced probability Pr(X = 18) := P({2,4,6}) = 1/2

Instead of writing Pr(X = 18) | will use P(X = 18)
Example

2 Ifw=6,

Y(w) =
{7 fw=1

Induced probability Pr(Y = 2) := P({6}) = ?



The event {6} is not assigned a probability

Of course we have a reasonable suspicion that P({6}) should equal
1/6, but strictly speaking this hasn’t been defined two slides earlier

So we have to treat P({6}) as unknown

To make sure that our random variable is not ill-defined like this we
need to rule out such situations

Here's a more robust definition



Definition (Random Variable—second and final attempt)

A random variable on (Q, ) is a function Z : Q — R such that
{we:Z(w) EBYe F for all Be B(R).

B(R) is the g-algebra generated by the closed intervals [a, b], for
a,be R

Intuition: B(IR) describes all events that can be created out of all
the points on the real line

B(R) is a rich set containing pretty much every subset of R that we
will ever be dealing with (including intervals, points)

| don’t need you to understand all intricacies here

Bottom line is:
The image Z(w) gets pulled back to an element of F for which
probabilities are well-defined

Using this more robust definition, Y is not a random variable



To see this, pick the subset B = {2} from B(IR)

- pick B = {2}
cH{w e Y(w) =2} ={6} & F

- same for B = {7}

The problem here is that Y is not F-measurable



Definition (Distribution or Law)
Given a random variable Z on a probability space (Q, F, P), the
distribution or law of the random variable is the probability

measure defined by
u(B):=P(Z€B), BeBM).

We say that p is the distribution of Z, or L(Z) is the law of Z.

Definition (Distribution Function)
The distribution function of a random variable Z is defined by
F(z) := u((—o0,z]) = P(Z < z), zeR.

F is also referred to as cumulative distribution function or cdf.

There is a one-to-one correspondence between distribution and cdfs

So we use them interchangeably



Definition (Weak Convergence)

Let F be a distribution function, and {Fy} be a sequence of
distribution functions. Then Fy converges weakly to F if
limy_, ., Fy(2z) = F(2) for each z at which F is continuous.

We write Fyy 5 F.

Equivalently we could say pupn L u for weak convergence

Definition (Convergence in Distribution)
Let Z be a random variable, and {Zy} be a sequence of random
variables. Then Z converges in distribution or law to Z if F\y 3 F.

We write Zy Sz

Now we turn to a few practical results that will help us soon when
we derive the asymptotic distribution of O



Theorem (Continuous Mapping Theorem)

If Zn 9 7 then 3(ZN) 4 g(Z) for continuous g.

Corollary

If Zyy 3 N(0,Q) then
AZy S N(©0,AQA")

(A+0,(1))Zy S N(O,AQA",

and since Z ~ N(0,Q) = Z'Q~1Z ~ x2(dim(Z)),
2317y S 2 (dim(Zy))
Zi(Q+ 0,12y & x2(dim(Zy)).



Another important result for the sample average Zy; := Zﬁil Z;/N.

Theorem (Central Limit Theorem (CLT))
Let Z,,Z,,... be a sequence of independent and identically
distributed random vectors with E||ZZ~||2 < co. Then

VN (Zy = pz) S N(0,E((Z; = uz)(Zi— 1)) ),

where u, := EZ;.

Notice:

|zl := VYz'z is the Euclidian norm here
- E||Z,|]* <  is an economical way of saying that all components
of Z; have finite means, variances, and covariances

The CLT is a remarkable result
From the WLLN we know that (Zy — piz) 2o

At the same time \/N — oo

Yet their product converges to a normal distribution!



The restrictions imposed in it don't seem very strong

For example, it does not matter what distribution the Z; come from
(as long as E[|Z;|* < oo)

The sample average multiplied by VN converges to a normal
distribution



Conventional terminology with regard to the result
‘/N(ZN_ Hz) 5 N(0, 2)

where Q := E((Z; — pz)(Z; — uz)")

- Zy is asymptotically normally distributed

- The large sample distribution of Z is normal
- (v is the asymptotic variance of YN (Zy — z)
- (/N is the asymptotic variance of Zy



Primitive usage

- when the sample size N is large yet finite

- the sample average Zy almost has a normal distribution
- around the population mean yz

- with variance QQ/N

- irrespective of the underlying distribution of the Z;,Z,, ...

Practical meaning of CLT: for large sample sizes
= approx

Zy "~ N(uz,Q/N)



Let's sketch the proof for a scalar-version of the CLT, where EZ; = p
and Var Z; = 02

We know from undergrad that EZy = p and Var Zy = 02/N,
therefore CLT says that

VN (Zy — pz) S N, 02)

or, equivalently,
‘/N(ZN - ﬂz)

0z

4N, 1)

To prove this, we need a new concept



Definition (Moment Generating Function)

Let Z be a random variable, the moment generating function (mgf)
of Z is given by Mz (t) = E (¢/?), where t € R.

Fun facts about the mgf

- The curvature of the mgf at zero describes all moments:
k
T22(0) = EZF
kth derivative evaluated at zero is equal to kth moment

(hence that name)

- not every random variable has a well-defined mgf
(there exists a generalization, called characteristic function that
overcomes this problem, mgf is a slightly less general version
but easier to work with)

- for random variables whose mgf exist:
two random variables have identical distributions if and only if
their mgf are the same



Mgf can be a useful device for establishing limiting distributions

Lemma (Curtiss’ Continuity Theorem)
Let Mz(t) be the mgf of Z and let Mz (t) be the mgf of Zy.
IflimN_,ooMZN(t) = M, (t) for every t then Zy a4z

This is based on Lévy's Continuity Theorem (1937)

\F(ZN }‘z)

We're interested in showing et N(0,1)

Let's consider the mgf of Zy ‘F(ZN #z)
and show that its limit is equal to the mgf of a N(0,1)
Wait! What is the mgf of the standard normal distribution?
Lemma

The mgf of the standard normal distribution is t — et*/2.

(Proof: see assignment)



\/>(ZN #z) (X Zi=Npy)
o N

My () = E (c2) = E(exp( Z(Zg ‘/ifﬂz)))

S R e R )
=E(exp( (Z;Z\/ﬁz))) _E(exp( ( :Z\/@))

et <;§;ﬁz>)))

- (ath)

where we define my, (t) := E (et(zl_.“z))

Notice Z




Copy and paste last line: mz (t) := E (ef%17#2))
Notice that
“my (0) =1
- mly (0) = E(Zy —pz) =0
- my (0) = E(Zy — pz)? = 07
Applying a second order Taylor approximation (at zero):
mz, (t) = mz, (0) +my (0)-t+ (1/2)my (0) - 12

=1+ (1/2)0%-#?

and therefore,

! 1407 a
my = U-Z'
! O-Z‘/N 2-(7%N
t2/2
:1+—/

N



Connecting the dots

M t) = ! N— 1 t2/2 :
ZN()_mZT UZ\/N _< +W

And finally, to evaluate the limit use this result:

Lemma

N
limN_,OO (1 3F I\if) = e
It follows that

2/ N .
. - 1 _ 2y
I\lil—rgoMZN(t)_l\lll—rgo<l+ N ) e

which is the mgf of a standard normal distribution

It follows that Zy S N(0,1)



[llustration of CLT
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[llustration of CLT

The underlying distribution of Z4, ..., Zy is exponential
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Ordinary Least Squares Estimation

Asymptotic Distribution of the OLS Estimator



We know that g°5 € L,

We would like to know the exact distribution of A for finite
samples (so-called small sample distribution)

Remember .
. N N\~ N
B =B + (Zizl Xz'Xi> iq it
B = E(X,X)EXY))

We suspect that BO%|X; ~ N(-,-) if u; ~ N(-, )

In the absence of such a restrictive assumption, we are unable to
determine the exact distribution of g%

We approximate exact distribution by asymptotic distribution

Our hope is that the asymptotic (aka large sample) distribution is a
good approximation



The CLT will be our main tool in deriving the asymptotic distribution
of BOLs

Big picture: we already know that g% — g* = 0,,(1)

From what | said earlier, we may suspect that \/KI(BOLS — B*) could
converge to a normal distribution

To derive this result, let's recall the following representation of the
OLS estimator from last week:

2005 _pe o [ 1X° ¢ T
P =p+ N Zl X X; N Zl Xiu;
1= 1=

Let's re-arrange terms ...



Copy and past, for convenience:
=il

R0LS * 1 S ’ 1 -
== =p"+ N Zl XiX; N Zl Xiu;
1= 1=

Then isolating VN(BO'S — g*):

)= () (W)

i=1

Can you see how the CLT can now be applied to the second factor on
the rhs?

Let’s break the rhs up again into its bits and pieces



We've already shown last week that, given E(X;X}) < oo,
|

1 N
(ﬁ ;XZX{-) = E(X;X)) ™t +0,(1) = 0,(1)

For the second factor on the rhs, we know that E (3_ X;u;/N) =0,
then applying the CLT is easy:

e d /
(W rmscs



Using our tools from basic asymptotic theory (part 2)
Proposition (Asymptotic Distribution of OLS Estimator)

VN (B - p*) = (N—l i Xinf)_l (N—l/z i Xiui)
=Sl

i=1
9 N, Q)

where Q := E(X; X)) TLE@2X; X)) E(X; X))~ L
Q is the asymptotic variance of YN (B — g*)

Q/N is the asymptotic variance of O

We take this to mean that 8% has an approximate normal
distribution with mean g* and variance Q/N



Ordinary Least Squares Estimation

Asymptotic Variance Estimation



The asymptotic variance of YN(BOS — *) is
Q= E(X,X) T E@dX X)) E(XX) ™!

The rhs is a function of unobserved population moments
How would we estimate Q7

Clearly, we estimate E(X;X}) by (1/N) Zf\il XX

But what about E(u?X;X})?

We don’t know u;



If we observed u; then we would surely use (1/N) Zfil uZ?X,-X{
That would be an unbiased variance estimator

But we don't observe the errors u;, instead we “observe” the
residuals #; := Y; — X; B

So how about using (1/N) Zg\il 12X, X! to estimate the middle piece?

While this is in principal the right idea, it results in a biased variance
estimator

Let’s try understand the source of this bias



First some new tools

Let My := Iy — Px with Py := X(X'X)"1X'

Then it = Mxu

Cool facts about My:

My = MY (symmetric) and MxMx = M (idempotent)

The trace of a K x K matrix is the sum of its diagonal elements:
trA:= Zﬁl a;

Savvy tricks: tr (AB) = tr (BA) andtr (A+B) =trA+trB

Then N
o tr (M’) tr (i u) tr ((Mxu)' (Mxu))
Lzl = Zlu N N
tr (u' M, MXu) tr (u’MXu) tr (Mxuu")
N N N N

Aside: dimMy = N x N and dim(uu’) = N x N



Now studying the conditional expectation
E(021X) = E (tr (Myuu')X) /N
=1tr (EMxuu'IX)) /N
=tr (MxE (uu'1X)) /N
=02.tr (Mx) /N
- 73 (%)
< o2,

where in the fourth equality we simplified our lives by setting
E(uu'|X) = o2l (conditional homoskedasticity)

(The fifth equality will be justified in Assignment 3)
Big picture: &2 is downwards biased which is not good
Confidence intervals based on &2 would be too narrow

Statistical inference based on &2 would be too optimistic



There is an easy fix!

Uses2 := 02 = 1o YN 2 instead

Obviously s2 will be unbiased

I'm not particularly concerned about this bias

That's because N should be a much larger number than K

The whole idea of using asymptotic approximations to finite sample
distributions is to let N - oo while K is fixed

In other words limp_,o 02 = limp_, o 52
(asymptotic bias is the same)



Combining things, we propose the following asymptotic variance
estimator

Definition (Asymptotic Variance Estimator)

2 N N N
O= (% ZXQ({) (%K Za?xixg) (% ZXin‘)

i=1 i=1
Stata calculates ) when you type something like

regress lwage schooling experience, robust

Textbooks call Q) the heteroskedasticity robust variance estimator

The standard errors derived from €) are sometimes referred to as
Eicker-Huber-White standard errors
(or some subset permutation of these names)



Notice: Wooldridge, on page 61, proposes this version
Definition (Asymptotic Variance Estimator)

N N N
A\Wool — 1 ! 1 ~2 14 1 14
ot = (F 2 xx;) (R mxx) (3 %)
i=1 i=1 i=1

—1 —1

This is NOT what Stata implements
(to the best of my knowledge)

But from what | said earlier, it merely creates rounding error

Asymptotically they are all identical
(because K is a finite number)



Ordinary Least Squares Estimation

Standard Errors and Confidence Intervals [next week?]



Why do we care about the distribution of gO?

Knowing the distribution helps us understand precision of the
estimate

In addition, people use the distribution to construct statistical tests

| prefer to focus on precision and ignore statistical testing



For the sake of illustration, let’s tentatively assume that
VN(BOL — B*) ~ N(0, )

The point here is that we assume that the normal distribution is
exact, not just an asymptotic approximation

Proposition
Let r be some K dimensional nonstochastic vector. Then
\/Kl(r’EOLS —7'B*) ~ N(0,7'Qr)

Corollary
7 R0LS __ %
u ~ N(0, 1)

Vr'Qr/N



You can pick r to consider any linear combination of the elements of
B* that you are interested in

Most times people use r = ¢, where e is the k-th unit vector taking
the value 1in position k and the value zero elsewhere

That way you are grabbing the kth element of a vector, or the (k, k)
element of a matrix

- Bi =€t = e
© Wik = E;CQE]{

TherengrSe oLs
k-~ Bk ep —ep”

\/wkk/N - \/el’(Qek/N

~ N(0,1)




The OLS estimator is a point estimator

It is unlikely that gL = g*
(in fact, that event has probability zero)

Instead of a point estimator, should we consider an interval
estimator?

Considerations:

- the smallest interval we would consider is g itself

- by having a proper interval, we can make sure that * is covered
with a probability larger than zero (unlike for point estimates)

- the largest interval covers the whole real line and guarantees a
100% coverage probability (not very informative though)

- there’s a tension between two goals:
high coverage probability vs narrow (informative) interval

Idea: accept a coverage probability that is a little less than 100%, say
95%, and hope to obtain an informative interval



BOLS_gx
Because ==—£ ~ N(0, 1),
= 0,1)

the obvious interval that comes to mind is [B,?LS +c- ,/a)kk/N]

This is symmetric around the point estimate because of the
symmetry of the normal distribution

A clever choice of ¢ will ensure a 95% coverage probability:

P (B € [BLY £1.96 - Jwi/N|) = 0.95

Careful! Don’t read this literally as
“the probability that g is in interval”

That's incorrect! It makes it sound as if B is a random variable
The random object is the interval [ A2 4 1.96 - \wy/N|

So the way to read the above statement is
“the probability that the interval covers ;"



Many people do not understand what a confidence interval can tell
them and what it cannot tell them

It means:
Prior to repeatedly estimating B,?LS in separate random experiments,
the probability is 95% that the random interval

[BOY° +1.96 - Jwyq/N| contains B
A frequentist’'s thought experiment: if | were given 100 random

samples of size N then about 95 of them will yield confidence
intervals that contain g5 (but | don’t know which ones)



Common misconceptions regarding confidence intervals

The following statements are all false

- The specific 95% confidence interval presented by a study has a
95% chance of containing the coefficient

- The true coefficient B; has a 95% probability of falling inside the
confidence interval

- A coefficient outside the 95% confidence interval is refuted by
the data
The first two in particular are believed by many people

Google: Statistical tests, P values, confidence intervals, and power: a
guide to misinterpretations, by Greenland at al, a worthwhile read



A few slides ago we tentatively assumed yVN(B°S — B*) ~ N(0, Q)
Now let's generalize by going back to \/KI(EOLS ) 9 N, Q)

It's easy to adjust earlier results accordingly, basically by replacing
'~ with "5’

Proposition

Let r be some K dimensional nonstochastic vector. Then
\/N(r’BOLS —7'B*) 9 NG, Or)

Corollary

T/ﬁOLS _ r/ﬁx— d

= N(0,1)
V' Qr/N



You may replace Q by O = Q + 0, (1):

Proposition
1 A0LS
u N(0,1)

\/r’Qr/N

Grabbing one element from that vector: b S

a)k /N

N(0, 1)

where @y := e,’(()ek

(this is a number that we can compute from the sample data)
The confidence interval for g therefore is [,E,?LS +1.96 - ,/(I)kk/N]

Terminology:
the term /@ /N is also called the asymptotic standard error of BO1°

Aside: by convention, an estimator of the standard deviation of an
estimator is called a standard error



Definition (Asymptotic Standard Error of 3°L5)

Let /N be the asymptotic variance of f°°. The asymptotic
standard errors of the OLS estimator g and g2 are

se(BO°) = ydiag (/N

se(BY) = e} - se(BO),
where Q/N is the estimator of the asymptotic variance of O

We obtain this result regarding the asymptotic coverage probability:
Proposition

dim P (B € [BY“ £1.96-se(B2)]) = 0.95



Ordinary Least Squares Estimation

Hypotheses Tests [next week?]



You study Y; = X;8* + u; where E (1;X;) =0

For simplicity X; is a scalar

For some reason you are interested in the value of g*
In particular, you want to know g* L0

You remember that OLS delivers a consistent estimator
You obtain g = 0.18

What do you do?



You consider two states of nature:

- pr=0

. Ig* +0
These are mutually exclusive and exhaustive
You can look at them as hypotheses

Definition (Statistical Hypothesis)
A statistical hypothesis is a statement about a population
parameter.

One is the null hypothesis, and one the alternative hypothesis
(of course denoted by H, and H;)

You would like to know which one is true
(if there is such a thing)



To determine which hypothesis is true, you propose:

if B> = 0 then p* = 0, else B* # 0
According to this decision rule, you decide that g* # 0
(because 0.18 # 0)

You have just conducted a hypothesis test

Definition
A statistical hypothesis test is a decision rule that specifies

(i) for which sample values Hy is considered true;
(i) for which sample values H; is considered true.



The hypothesis test
if B = 0 then B* = 0, else B* # 0

is not good because you will almost certainly conclude that g* # 0
This test is extremely conservative

You understand that B°% could be nonzero even if g* = 0

The estimator B°% is subject to sampling error

As sensible test should reflect this possibility of sampling error, and
therefore the variance of 8% should play a role too

If we are unable to quantify the exact variance of O, the
asymptotic variance will be good enough

The most common statistic to combine information of the point
estimate and its variance is the f-statistic



Definition (t-Statistic)
Let @ be an estimator and se(8) be its asymptotic standard error.

Then
té(e) =

66
se ()

is the t-statistic or t-ratio for 6.

It has the shape of the standardized estimator @
Let’s say we have two competing estimators, labelled B°% and BV
and we want to test if g* = 24

Then we would look at tB°L5(24) and tB‘V(24>



It should be clear that because g% = g* + 0,(1)
Egos (B9 S N(O, 1)

Software packages such as Stata have the terrible habit of reporting
tBOLS(O) as part of a standard regression output

tBOLS(O) facilitates a hypothesis test of the null f* = 0 against the
alternative B* # 0, the critical value is simply +1.96

It is not clear that the null 8* = 0 is interesting at all



There is an awful practice in applied econometrics to focus on the
value of t-statistics, or, equivalently, on significance stars

The vast majority of researchers present their estimation tables with
STATA significance stars

- |t| > 1.64 receives one star
- || > 1.96 receives two stars
- |t| > 2.58 receives three stars

It's like the Michelin restaurant guide: the more stars, the better!



For example, if the return to schooling is estimated to equal 0.14 and
it is statistically significant at the 95% level, then the table will say
0.14**

Many applied papers limit the discussion of their results only to
those coefficient estimates with stars attached, that is, only to those
who are statistically significant

Results that don’t have any stars are often ignored

Our average Monday seminar follows this pattern



Sadly, PhD students copy this terrible practice

| have had countless conversations with PhD students whose goal it
is to obtain stars in their tables

Because the opinion is: NO STARS, NO PAPER!
The research objective becomes: obtain stars

But often times stars are out of reach



Try do your estimations without stars or f-statistics
They are simplistic or reductionist

They seem to apply a binary world:
results are either statistically significant or irrelevant

(Also, they encourage star-hacking:
the strong incentive to obtain stars)

So what should you be doing?

What ought to be best practice?
(But admittedly and unfortunately isn't)



Report standard errors and confidence intervals
They offer a notion of precision of estimates

Also, never ever say this:

“The estimate is highly significance”

(or variations thereof)

It demonstrates that you don’t understand what you are doing

(Also: don't use STATA)
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