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Roadmap

Ordinary Least Squares Estimation

Basic Asymptotic Theory (part 2 of 2)

Asymptotic Distribution of the OLS Estimator

Asymptotic Variance Estimation

Standard Errors and Confidence Intervals [next week?]

Hypotheses Tests [next week?]
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Let there be a probability space (Ω,ℱ, 𝑃)

• Ω is the outcome space
• ℱ collects events from Ω
• 𝑃 is a probability measure on ℱ

Example (Only Looks Like Rolling a Die)

• Ω = {1, 2, 3, 4, 5, 6}
• ℱ = {{1, 3, 5} , {2, 4, 6} ,Ω, ∅}
• Consider all 𝐴 ∈ ℱ

𝑃(𝐴) =

⎧{{{{
⎨{{{{⎩

0 if 𝐴 = ∅
1/2 if 𝐴 = {1, 3, 5}
1/2 if 𝐴 = {2, 4, 6}
1 if 𝐴 = Ω

Notice that 𝑃({2}) is not specified
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Definition (Random Variable—first attempt)
A random variable on (Ω,ℱ) is a function 𝑍 ∶ Ω → R.

Example

𝑋(𝜔) =
⎧{
⎨{⎩

18 if 𝜔 even,
24 if 𝜔 odd

Induced probability Pr(𝑋 = 18) ∶= 𝑃({2, 4, 6}) = 1/2

Instead of writing Pr(𝑋 = 18) I will use 𝑃(𝑋 = 18)

Example

𝑌(𝜔) =
⎧{
⎨{⎩

2 if 𝜔 = 6,
7 if 𝜔 = 1

Induced probability Pr(𝑌 = 2) ∶= 𝑃({6}) = ?
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The event {6} is not assigned a probability

Of course we have a reasonable suspicion that 𝑃({6}) should equal
1/6, but strictly speaking this hasn’t been defined two slides earlier

So we have to treat 𝑃({6}) as unknown

To make sure that our random variable is not ill-defined like this we
need to rule out such situations

Here’s a more robust definition
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Definition (Random Variable—second and final attempt)
A random variable on (Ω,ℱ) is a function 𝑍 ∶ Ω → R such that

{𝜔 ∈ Ω ∶ 𝑍(𝑤) ∈ 𝐵} ∈ ℱ for all 𝐵 ∈ ℬ(R).

ℬ(R) is the 𝜎-algebra generated by the closed intervals [𝑎, 𝑏], for
𝑎, 𝑏 ∈ R

Intuition: ℬ(R) describes all events that can be created out of all
the points on the real line

ℬ(R) is a rich set containing pretty much every subset of R that we
will ever be dealing with (including intervals, points)

I don’t need you to understand all intricacies here

Bottom line is:
The image 𝑍(𝑤) gets pulled back to an element of ℱ for which
probabilities are well-defined

Using this more robust definition, 𝑌 is not a random variable
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To see this, pick the subset 𝐵 = {2} from ℬ(R)

• pick 𝐵 = {2}
• {𝜔 ∈ Ω ∶ 𝑌(𝜔) = 2} = {6} ∉ ℱ
• same for 𝐵 = {7}

The problem here is that 𝑌 is not ℱ-measurable
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Definition (Distribution or Law)
Given a random variable 𝑍 on a probability space (Ω,ℱ, 𝑃), the
distribution or law of the random variable is the probability
measure defined by

𝜇(𝐵) ∶= 𝑃(𝑍 ∈ 𝐵), 𝐵 ∈ ℬ(R).

We say that 𝜇 is the distribution of 𝑍, or ℒ(𝑍) is the law of 𝑍.

Definition (Distribution Function)
The distribution function of a random variable 𝑍 is defined by

𝐹(𝑧) ∶= 𝜇((−∞, 𝑧]) = 𝑃(𝑍 ≤ 𝑧), 𝑧 ∈ R.

𝐹 is also referred to as cumulative distribution function or cdf.

There is a one-to-one correspondence between distribution and cdfs

So we use them interchangeably
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Definition (Weak Convergence)
Let 𝐹 be a distribution function, and {𝐹𝑁} be a sequence of
distribution functions. Then 𝐹𝑁 converges weakly to 𝐹 if
lim𝑁→∞ 𝐹𝑁(𝑧) = 𝐹(𝑧) for each 𝑧 at which 𝐹 is continuous.

We write 𝐹𝑁
w→ 𝐹.

Equivalently we could say 𝜇𝑁
w→ 𝜇 for weak convergence

Definition (Convergence in Distribution)
Let 𝑍 be a random variable, and {𝑍𝑁} be a sequence of random
variables. Then 𝑍𝑁 converges in distribution or law to 𝑍 if 𝐹𝑁

w→ 𝐹.

We write 𝑍𝑁
d→ 𝑍.

Now we turn to a few practical results that will help us soon when
we derive the asymptotic distribution of ̂𝛽OLS
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Theorem (Continuous Mapping Theorem)

If 𝑍𝑁
d→ 𝑍 then 𝑔(𝑍𝑁) d→ 𝑔(𝑍) for continuous 𝑔.

Corollary

If 𝑍𝑁
d→ 𝑁(0,Ω) then

𝐴𝑍𝑁
d→ 𝑁(0,𝐴Ω𝐴′)

(𝐴+ o𝑝(1))𝑍𝑁
d→ 𝑁(0,𝐴Ω𝐴′),

and since 𝑍 ∼ 𝑁(0,Ω) ⇒ 𝑍′Ω−1𝑍 ∼ 𝜒2(dim(𝑍)),
𝑍′

𝑁Ω−1𝑍𝑁
d→ 𝜒2(𝑑𝑖𝑚(𝑍𝑁))

𝑍′
𝑁(Ω+ o𝑝(1))−1𝑍𝑁

d→ 𝜒2(𝑑𝑖𝑚(𝑍𝑁)).
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Another important result for the sample average 𝑍̄𝑁 ∶= ∑𝑁
𝑖=1 𝑍𝑖/𝑁.

Theorem (Central Limit Theorem (CLT))
Let 𝑍1, 𝑍2,… be a sequence of independent and identically
distributed random vectors with E ∥𝑍𝑖∥

2 < ∞. Then
√𝑁(𝑍̄𝑁 −𝜇𝑍)

d→ N(0, E ((𝑍𝑖 −𝜇𝑍)(𝑍𝑖 −𝜇𝑍)′) ),

where 𝜇𝑧 ∶= E𝑍𝑖.

Notice:

• ‖𝑧‖ ∶= √𝑧′𝑧 is the Euclidian norm here
• E ∥𝑍𝑖∥

2 < ∞ is an economical way of saying that all components
of 𝑍𝑖 have finite means, variances, and covariances

The CLT is a remarkable result

From the WLLN we know that (𝑍̄𝑁 −𝜇𝑍)
p→ 0

At the same time √𝑁 → ∞

Yet their product converges to a normal distribution!
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The restrictions imposed in it don’t seem very strong

For example, it does not matter what distribution the 𝑍𝑖 come from
(as long as E ∥𝑍𝑖∥

2 < ∞)

The sample average multiplied by √𝑁 converges to a normal
distribution
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Conventional terminology with regard to the result
√𝑁(𝑍̄𝑁 −𝜇𝑍)

d→ N(0,Ω)

where Ω ∶= E ((𝑍𝑖 −𝜇𝑍)(𝑍𝑖 −𝜇𝑍)′)

• 𝑍̄𝑁 is asymptotically normally distributed
• The large sample distribution of 𝑍̄𝑁 is normal
• Ω is the asymptotic variance of √𝑁(𝑍̄𝑁 −𝜇𝑍)
• Ω/𝑁 is the asymptotic variance of 𝑍̄𝑁
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Primitive usage

• when the sample size 𝑁 is large yet finite
• the sample average 𝑍̄𝑁 almost has a normal distribution
• around the population mean 𝜇𝑍

• with variance Ω/𝑁
• irrespective of the underlying distribution of the 𝑍1, 𝑍2,…

Practical meaning of CLT: for large sample sizes
𝑍̄𝑁

𝑎𝑝𝑝𝑟𝑜𝑥∼ 𝑁(𝜇𝑍, Ω/𝑁)
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Let’s sketch the proof for a scalar-version of the CLT, where E𝑍𝑖 = 𝜇𝑍
and Var 𝑍𝑖 = 𝜎2

𝑍

We know from undergrad that E𝑍̄𝑁 = 𝜇𝑍 and Var 𝑍̄𝑁 = 𝜎2
𝑍/𝑁,

therefore CLT says that

√𝑁(𝑍̄𝑁 −𝜇𝑍)
d→ N(0, 𝜎2

𝑍)

or, equivalently,
√𝑁(𝑍̄𝑁 −𝜇𝑍)

𝜎𝑍

d→ N(0, 1)

To prove this, we need a new concept
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Definition (Moment Generating Function)
Let 𝑍 be a random variable, the moment generating function (mgf)
of 𝑍 is given by 𝑀𝑍(𝑡) = E (𝑒𝑡𝑍), where 𝑡 ∈ R.

Fun facts about the mgf

• The curvature of the mgf at zero describes all moments:
𝑑𝑘𝑀𝑍

𝑑𝑡𝑘 (0) = E𝑍𝑘

𝑘th derivative evaluated at zero is equal to 𝑘th moment
(hence that name)

• not every random variable has a well-defined mgf
(there exists a generalization, called characteristic function that
overcomes this problem, mgf is a slightly less general version
but easier to work with)

• for random variables whose mgf exist:
two random variables have identical distributions if and only if
their mgf are the same
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Mgf can be a useful device for establishing limiting distributions

Lemma (Curtiss’ Continuity Theorem)
Let𝑀𝑍(𝑡) be the mgf of 𝑍 and let𝑀𝑍𝑁

(𝑡) be the mgf of 𝑍𝑁.
If lim𝑁→∞ 𝑀𝑍𝑁

(𝑡) = 𝑀𝑍(𝑡) for every 𝑡 then 𝑍𝑁
d→ 𝑍.

This is based on Lévy’s Continuity Theorem (1937)

We’re interested in showing
√𝑁(𝑍̄𝑁−𝜇𝑍)

𝜎𝑍

d→ N(0, 1)

Let’s consider the mgf of 𝑍𝑁 ∶=
√𝑁(𝑍̄𝑁−𝜇𝑍)

𝜎𝑍
and show that its limit is equal to the mgf of a 𝑁(0, 1)

Wait! What is the mgf of the standard normal distribution?

Lemma

The mgf of the standard normal distribution is 𝑡 ↦ 𝑒𝑡2/2.

(Proof: see assignment)
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Notice 𝑍𝑁 ∶=
√𝑁(𝑍̄𝑁−𝜇𝑍)

𝜎𝑍
= (∑ 𝑍𝑖−𝑁𝜇𝑍)

𝜎𝑍√𝑁

𝑀𝑍𝑁
(𝑡) = E (𝑒𝑡𝑍𝑁) = E⎛⎜⎜

⎝
exp⎛⎜⎜

⎝
𝑡
∑(𝑍𝑖 −𝑁𝜇𝑍)

𝜎𝑍√𝑁
⎞⎟⎟
⎠
⎞⎟⎟
⎠

= E⎛⎜⎜
⎝

exp⎛⎜⎜
⎝
𝑡
(𝑍1 −𝜇𝑍)

𝜎𝑍√𝑁
⎞⎟⎟
⎠
⋅ exp⎛⎜⎜

⎝
𝑡
(𝑍2 −𝜇𝑍)

𝜎𝑍√𝑁
⎞⎟⎟
⎠
⋯ exp⎛⎜⎜

⎝
𝑡
(𝑍𝑁 −𝜇𝑍)

𝜎𝑍√𝑁
⎞⎟⎟
⎠
⎞⎟⎟
⎠

= E⎛⎜⎜
⎝

exp⎛⎜⎜
⎝
𝑡
(𝑍1 −𝜇𝑍)

𝜎𝑍√𝑁
⎞⎟⎟
⎠
⎞⎟⎟
⎠
⋯ E⎛⎜⎜

⎝
exp⎛⎜⎜

⎝
𝑡
(𝑍𝑁 −𝜇𝑍)

𝜎𝑍√𝑁
⎞⎟⎟
⎠
⎞⎟⎟
⎠

= E⎛⎜⎜
⎝
⎛⎜⎜
⎝

exp⎛⎜⎜
⎝
𝑡
(𝑍1 −𝜇𝑍)

𝜎𝑍√𝑁
⎞⎟⎟
⎠
⎞⎟⎟
⎠
⎞⎟⎟
⎠

𝑁

= 𝑚𝑍1
⎛⎜⎜
⎝

𝑡

𝜎𝑧√𝑁
⎞⎟⎟
⎠

𝑁

where we define 𝑚𝑍1
(𝑡) ∶= E (𝑒𝑡(𝑍1−𝜇𝑍))

18 / 59



Copy and paste last line: 𝑚𝑍1
(𝑡) ∶= E (𝑒𝑡(𝑍1−𝜇𝑍))

Notice that

• 𝑚𝑍1
(0) = 1

• 𝑚′
𝑍1

(0) = E(𝑍1 −𝜇𝑍) = 0
• 𝑚″

𝑍1
(0) = E(𝑍1 −𝜇𝑍)2 = 𝜎2

𝑍

Applying a second order Taylor approximation (at zero):
𝑚𝑍1

(𝑡) ≈ 𝑚𝑍1
(0) +𝑚′

𝑍1
(0) ⋅ 𝑡 + (1/2)𝑚″

𝑍1
(0) ⋅ 𝑡2

= 1+ (1/2)𝜎2
𝑍 ⋅ 𝑡2

and therefore,

𝑚𝑍1
⎛⎜⎜
⎝

𝑡

𝜎𝑧√𝑁
⎞⎟⎟
⎠

= 1+ 𝜎2
𝑍 ⋅

𝑡2

2 ⋅ 𝜎2
𝑍𝑁

= 1+
𝑡2/2
𝑁
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Connecting the dots

𝑀𝑍𝑁
(𝑡) = 𝑚𝑍1

⎛⎜⎜
⎝

𝑡

𝜎𝑧√𝑁
⎞⎟⎟
⎠

𝑁

= (1+
𝑡2/2
𝑁 )

𝑁

And finally, to evaluate the limit use this result:

Lemma

lim𝑁→∞ (1 + 𝑐
𝑁)

𝑁
= 𝑒𝑐.

It follows that

lim
𝑁→∞

𝑀𝑍𝑁
(𝑡) = lim

𝑁→∞
(1+

𝑡2/2
𝑁 )

𝑁

= 𝑒𝑡2/2,

which is the mgf of a standard normal distribution

It follows that 𝑍𝑁
d→ 𝑁(0, 1)
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Illustration of CLT

The underlying distribution of 𝑍1,… , 𝑍𝑁 is exponential
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Illustration of CLT

The underlying distribution of 𝑍1,… , 𝑍𝑁 is exponential
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We know that ̂𝛽OLS ∈ 𝐿2

We would like to know the exact distribution of ̂𝛽OLS for finite
samples (so-called small sample distribution)

Remember
̂𝛽OLS = 𝛽∗ +(∑

𝑁

𝑖=1
𝑋𝑖𝑋′

𝑖)
−1

∑
𝑁

𝑖=1
𝑋𝑖𝑢𝑖

𝛽∗ = E(𝑋𝑖𝑋′
𝑖)−1E(𝑋𝑖𝑌𝑖)

We suspect that ̂𝛽OLS|𝑋𝑖 ∼ N(⋅, ⋅) if 𝑢𝑖 ∼ N(⋅, ⋅)

In the absence of such a restrictive assumption, we are unable to
determine the exact distribution of ̂𝛽OLS

We approximate exact distribution by asymptotic distribution

Our hope is that the asymptotic (aka large sample) distribution is a
good approximation
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The CLT will be our main tool in deriving the asymptotic distribution
of ̂𝛽OLS

Big picture: we already know that ̂𝛽OLS −𝛽∗ = o𝑝(1)

From what I said earlier, we may suspect that √𝑁( ̂𝛽OLS −𝛽∗) could
converge to a normal distribution

To derive this result, let’s recall the following representation of the
OLS estimator from last week:

̂𝛽OLS =𝛽∗ +⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖⎞⎟
⎠

Let’s re-arrange terms …
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Copy and past, for convenience:

̂𝛽OLS =𝛽∗ +⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖⎞⎟
⎠

Then isolating √𝑁( ̂𝛽OLS −𝛽∗):

√𝑁( ̂𝛽OLS −𝛽∗) = ⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝
√𝑁⎛⎜

⎝
1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖⎞⎟
⎠
⎞⎟
⎠

Can you see how the CLT can now be applied to the second factor on
the rhs?

Let’s break the rhs up again into its bits and pieces
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We’ve already shown last week that, given E(𝑋𝑖𝑋′
𝑖) < ∞,

⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1

= E(𝑋𝑖𝑋′
𝑖)−1 + o𝑝(1) = O𝑝(1)

For the second factor on the rhs, we know that E (∑𝑋𝑖𝑢𝑖/𝑁) = 0,
then applying the CLT is easy:

⎛⎜
⎝
√𝑁⎛⎜

⎝
1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖⎞⎟
⎠
⎞⎟
⎠

d→ N(0, E(𝑢2
𝑖 𝑋𝑖𝑋′

𝑖))
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Using our tools from basic asymptotic theory (part 2)

Proposition (Asymptotic Distribution of OLS Estimator)

√𝑁( ̂𝛽OLS −𝛽∗) = ⎛⎜
⎝
𝑁−1

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝
𝑁−1/2

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖⎞⎟
⎠

d→ N(0,Ω)

where Ω ∶= E(𝑋𝑖𝑋′
𝑖)−1E(𝑢2

𝑖 𝑋𝑖𝑋′
𝑖)E(𝑋𝑖𝑋′

𝑖)−1.

Ω is the asymptotic variance of √𝑁( ̂𝛽OLS −𝛽∗)

Ω/𝑁 is the asymptotic variance of ̂𝛽OLS

We take this to mean that ̂𝛽OLS has an approximate normal
distribution with mean 𝛽∗ and variance Ω/𝑁
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The asymptotic variance of √𝑁( ̂𝛽OLS −𝛽∗) is

Ω ∶= E(𝑋𝑖𝑋′
𝑖)−1E(𝑢2

𝑖 𝑋𝑖𝑋′
𝑖)E(𝑋𝑖𝑋′

𝑖)−1

The rhs is a function of unobserved population moments

How would we estimate Ω?

Clearly, we estimate E(𝑋𝑖𝑋′
𝑖) by (1/𝑁)∑𝑁

𝑖=1 𝑋𝑖𝑋′
𝑖

But what about E(𝑢2
𝑖 𝑋𝑖𝑋′

𝑖)?

We don’t know 𝑢𝑖
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If we observed 𝑢𝑖 then we would surely use (1/𝑁)∑𝑁
𝑖=1 𝑢2

𝑖 𝑋𝑖𝑋′
𝑖

That would be an unbiased variance estimator

But we don’t observe the errors 𝑢𝑖, instead we “observe” the
residuals ̂𝑢𝑖 ∶= 𝑌𝑖 −𝑋′

𝑖
̂𝛽OLS

So how about using (1/𝑁)∑𝑁
𝑖=1 ̂𝑢2

𝑖 𝑋𝑖𝑋′
𝑖 to estimate the middle piece?

While this is in principal the right idea, it results in a biased variance
estimator

Let’s try understand the source of this bias
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First some new tools

Let 𝑀𝑋 ∶= 𝐼𝑁 −𝑃𝑋 with 𝑃𝑋 ∶= 𝑋(𝑋′𝑋)−1𝑋′

Then ̂𝑢 = 𝑀𝑋𝑢

Cool facts about 𝑀𝑋:
𝑀𝑋 = 𝑀′

𝑋 (symmetric) and 𝑀𝑋𝑀𝑋 = 𝑀𝑋 (idempotent)

The trace of a 𝐾 ×𝐾 matrix is the sum of its diagonal elements:
tr 𝐴 ∶= ∑𝐾

𝑖=1 𝑎𝑖𝑖

Savvy tricks: tr (𝐴𝐵) = tr (𝐵𝐴) and tr (𝐴+ 𝐵) = tr 𝐴+ tr 𝐵

Then

𝜎̂2
𝑢 ∶=

𝑁
∑
𝑖=1

̂𝑢2
𝑖 /𝑁 =

tr ( ̂𝑢 ̂𝑢′)
𝑁 =

tr ( ̂𝑢′ ̂𝑢)
𝑁 =

tr ((𝑀𝑋𝑢)′(𝑀𝑋𝑢))
𝑁

=
tr (𝑢′𝑀′

𝑋𝑀𝑋𝑢)
𝑁 =

tr (𝑢′𝑀𝑋𝑢)
𝑁 =

tr (𝑀𝑋𝑢𝑢′)
𝑁

Aside: dim𝑀𝑋 = 𝑁 ×𝑁 and dim(𝑢𝑢′) = 𝑁 ×𝑁
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Now studying the conditional expectation
E (𝜎̂2

𝑢 |𝑋) = E (tr (𝑀𝑋𝑢𝑢′)|𝑋) /𝑁
= tr (𝐸 (𝑀𝑋𝑢𝑢′|𝑋)) /𝑁
= tr (𝑀𝑋E (𝑢𝑢′|𝑋)) /𝑁
= 𝜎2

𝑢 ⋅ tr (𝑀𝑋) /𝑁

= 𝜎2
𝑢 (𝑁−𝐾

𝑁 )

< 𝜎2
𝑢 ,

where in the fourth equality we simplified our lives by setting
E(𝑢𝑢′|𝑋) = 𝜎2

𝑢𝐼𝑁 (conditional homoskedasticity)

(The fifth equality will be justified in Assignment 3)

Big picture: 𝜎̂2
𝑢 is downwards biased which is not good

Confidence intervals based on 𝜎̂2
𝑢 would be too narrow

Statistical inference based on 𝜎̂2
𝑢 would be too optimistic
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There is an easy fix!

Use 𝑠2
𝑢 ∶= 𝑁

𝑁−𝐾 𝜎̂2
𝑢 = 1

𝑁−𝐾 ∑𝑁
𝑖=1 ̂𝑢2

𝑖 instead

Obviously 𝑠2
𝑢 will be unbiased

I’m not particularly concerned about this bias

That’s because 𝑁 should be a much larger number than 𝐾

The whole idea of using asymptotic approximations to finite sample
distributions is to let 𝑁 → ∞ while 𝐾 is fixed

In other words lim𝑁→∞ 𝜎̂2
𝑢 = lim𝑁→∞ 𝑠2

𝑢
(asymptotic bias is the same)
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Combining things, we propose the following asymptotic variance
estimator

Definition (Asymptotic Variance Estimator)

Ω̂ = ⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁−𝐾

𝑁
∑
𝑖=1

̂𝑢2
𝑖 𝑋𝑖𝑋′

𝑖
⎞⎟
⎠
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1

Stata calculates Ω̂ when you type something like

regress lwage schooling experience, robust

Textbooks call Ω̂ the heteroskedasticity robust variance estimator

The standard errors derived from Ω̂ are sometimes referred to as
Eicker-Huber-White standard errors
(or some subset permutation of these names)
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Notice: Wooldridge, on page 61, proposes this version

Definition (Asymptotic Variance Estimator)

Ω̂Wool
dridge = ⎛⎜

⎝
1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

̂𝑢2
𝑖 𝑋𝑖𝑋′

𝑖
⎞⎟
⎠
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1

This is NOT what Stata implements
(to the best of my knowledge)

But from what I said earlier, it merely creates rounding error

Asymptotically they are all identical
(because 𝐾 is a finite number)
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Why do we care about the distribution of ̂𝛽OLS?

Knowing the distribution helps us understand precision of the
estimate

In addition, people use the distribution to construct statistical tests

I prefer to focus on precision and ignore statistical testing
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For the sake of illustration, let’s tentatively assume that
√𝑁( ̂𝛽OLS −𝛽∗) ∼ N(0,Ω)

The point here is that we assume that the normal distribution is
exact, not just an asymptotic approximation

Proposition
Let 𝑟 be some 𝐾 dimensional nonstochastic vector. Then

√𝑁(𝑟′ ̂𝛽OLS − 𝑟′𝛽∗) ∼ N(0, 𝑟′Ω𝑟)

Corollary

𝑟′ ̂𝛽OLS − 𝑟′𝛽∗

√𝑟′Ω𝑟/𝑁
∼ N(0, 1)
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You can pick 𝑟 to consider any linear combination of the elements of
𝛽∗ that you are interested in

Most times people use 𝑟 = 𝑒𝑘 where 𝑒𝑘 is the 𝑘-th unit vector taking
the value 1 in position 𝑘 and the value zero elsewhere

That way you are grabbing the 𝑘th element of a vector, or the (𝑘, 𝑘)
element of a matrix

• 𝛽∗
𝑘 = 𝑒′

𝑘𝛽
∗ = 𝛽∗′𝑒𝑘

• 𝜔𝑘𝑘 = 𝑒′
𝑘Ω𝑒𝑘

Therefore
̂𝛽OLS𝑘 −𝛽∗

𝑘

√𝜔𝑘𝑘/𝑁
=

𝑒′
𝑘

̂𝛽OLS − 𝑒′
𝑘𝛽

∗

√𝑒′
𝑘Ω𝑒𝑘/𝑁

∼ N(0, 1)
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The OLS estimator is a point estimator

It is unlikely that ̂𝛽OLS = 𝛽∗

(in fact, that event has probability zero)

Instead of a point estimator, should we consider an interval
estimator?

Considerations:

• the smallest interval we would consider is ̂𝛽OLS itself
• by having a proper interval, we can make sure that 𝛽∗ is covered
with a probability larger than zero (unlike for point estimates)

• the largest interval covers the whole real line and guarantees a
100% coverage probability (not very informative though)

• there’s a tension between two goals:
high coverage probability vs narrow (informative) interval

Idea: accept a coverage probability that is a little less than 100%, say
95%, and hope to obtain an informative interval
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Because
̂𝛽OLS𝑘 −𝛽∗

𝑘

√𝜔𝑘𝑘/𝑁
∼ N(0, 1),

the obvious interval that comes to mind is [ ̂𝛽OLS𝑘 ± 𝑐 ⋅ √𝜔𝑘𝑘/𝑁]

This is symmetric around the point estimate because of the
symmetry of the normal distribution

A clever choice of 𝑐 will ensure a 95% coverage probability:
𝑃(𝛽∗

𝑘 ∈ [ ̂𝛽OLS𝑘 ± 1.96 ⋅ √𝜔𝑘𝑘/𝑁]) = 0.95

Careful! Don’t read this literally as
“the probability that 𝛽∗

𝑘 is in interval”

That’s incorrect! It makes it sound as if 𝛽∗
𝑘 is a random variable

The random object is the interval [ ̂𝛽OLS𝑘 ± 1.96 ⋅ √𝜔𝑘𝑘/𝑁]

So the way to read the above statement is
“the probability that the interval covers 𝛽∗

𝑘”
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Many people do not understand what a confidence interval can tell
them and what it cannot tell them

It means:
Prior to repeatedly estimating ̂𝛽OLS𝑘 in separate random experiments,
the probability is 95% that the random interval
[ ̂𝛽OLS𝑘 ± 1.96 ⋅ √𝜔𝑘𝑘/𝑁] contains 𝛽∗

𝑘

A frequentist’s thought experiment: if I were given 100 random
samples of size 𝑁 then about 95 of them will yield confidence
intervals that contain 𝛽∗

𝑘 (but I don’t know which ones)
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Common misconceptions regarding confidence intervals

The following statements are all false

• The specific 95% confidence interval presented by a study has a
95% chance of containing the coefficient

• The true coefficient 𝛽∗
𝑘 has a 95% probability of falling inside the

confidence interval
• A coefficient outside the 95% confidence interval is refuted by
the data

The first two in particular are believed by many people

Google: Statistical tests, P values, confidence intervals, and power: a
guide to misinterpretations, by Greenland at al, a worthwhile read
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A few slides ago we tentatively assumed √𝑁( ̂𝛽OLS −𝛽∗) ∼ N(0,Ω)

Now let’s generalize by going back to √𝑁( ̂𝛽OLS −𝛽∗) d→ N(0,Ω)

It’s easy to adjust earlier results accordingly, basically by replacing
’∼’ with ’ d→’

Proposition
Let 𝑟 be some 𝐾 dimensional nonstochastic vector. Then

√𝑁(𝑟′ ̂𝛽OLS − 𝑟′𝛽∗) d→ N(0, 𝑟′Ω𝑟)

Corollary

𝑟′ ̂𝛽OLS − 𝑟′𝛽∗

√𝑟′Ω𝑟/𝑁
d→ N(0, 1)
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You may replace Ω by Ω̂ = Ω+ o𝑝(1):

Proposition

𝑟′ ̂𝛽OLS − 𝑟′𝛽∗

√𝑟′Ω̂𝑟/𝑁

d→ N(0, 1)

Grabbing one element from that vector:
̂𝛽OLS𝑘 −𝛽∗

𝑘

√𝜔̂𝑘𝑘/𝑁
d→ N(0, 1)

where 𝜔̂𝑘𝑘 ∶= 𝑒′
𝑘Ω̂𝑒𝑘

(this is a number that we can compute from the sample data)

The confidence interval for 𝛽∗
𝑘 therefore is [ ̂𝛽OLS𝑘 ± 1.96 ⋅ √𝜔̂𝑘𝑘/𝑁]

Terminology:
the term √𝜔̂𝑘𝑘/𝑁 is also called the asymptotic standard error of ̂𝛽OLS𝑘

Aside: by convention, an estimator of the standard deviation of an
estimator is called a standard error
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Definition (Asymptotic Standard Error of ̂𝛽OLS)

Let Ω/𝑁 be the asymptotic variance of ̂𝛽OLS. The asymptotic
standard errors of the OLS estimator ̂𝛽OLS and ̂𝛽OLS𝑘 are

se( ̂𝛽OLS) = √diag Ω̂/𝑁
se( ̂𝛽OLS𝑘 ) = 𝑒′

𝑘 ⋅ se( ̂𝛽OLS),

where Ω̂/𝑁 is the estimator of the asymptotic variance of ̂𝛽OLS

We obtain this result regarding the asymptotic coverage probability:

Proposition

lim
𝑁→∞

𝑃(𝛽∗
𝑘 ∈ [ ̂𝛽OLS𝑘 ± 1.96 ⋅ se( ̂𝛽OLS𝑘 )]) = 0.95
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You study 𝑌𝑖 = 𝑋𝑖𝛽∗ +𝑢𝑖 where E (𝑢𝑖𝑋𝑖) = 0

For simplicity 𝑋𝑖 is a scalar

For some reason you are interested in the value of 𝛽∗

In particular, you want to know 𝛽∗ ?= 0

You remember that OLS delivers a consistent estimator

You obtain ̂𝛽OLS = 0.18

What do you do?
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You consider two states of nature:

• 𝛽∗ = 0
• 𝛽∗ ≠ 0

These are mutually exclusive and exhaustive

You can look at them as hypotheses

Definition (Statistical Hypothesis)
A statistical hypothesis is a statement about a population
parameter.

One is the null hypothesis, and one the alternative hypothesis
(of course denoted by 𝐻0 and 𝐻1)

You would like to know which one is true
(if there is such a thing)

50 / 59



To determine which hypothesis is true, you propose:

if ̂𝛽OLS = 0 then 𝛽∗ = 0, else 𝛽∗ ≠ 0

According to this decision rule, you decide that 𝛽∗ ≠ 0
(because 0.18 ≠ 0)

You have just conducted a hypothesis test

Definition
A statistical hypothesis test is a decision rule that specifies

(i) for which sample values 𝐻0 is considered true;
(ii) for which sample values 𝐻1 is considered true.
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The hypothesis test

if ̂𝛽OLS = 0 then 𝛽∗ = 0, else 𝛽∗ ≠ 0

is not good because you will almost certainly conclude that 𝛽∗ ≠ 0

This test is extremely conservative

You understand that ̂𝛽OLS could be nonzero even if 𝛽∗ = 0

The estimator ̂𝛽OLS is subject to sampling error

As sensible test should reflect this possibility of sampling error, and
therefore the variance of ̂𝛽OLS should play a role too

If we are unable to quantify the exact variance of ̂𝛽OLS, the
asymptotic variance will be good enough

The most common statistic to combine information of the point
estimate and its variance is the 𝑡-statistic
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Definition (𝑡-Statistic)
Let ̂𝜃 be an estimator and se( ̂𝜃) be its asymptotic standard error.
Then

𝑡 ̂𝜃(𝜃) ∶=
̂𝜃 − 𝜃

se( ̂𝜃)

is the 𝑡-statistic or 𝑡-ratio for 𝜃.

It has the shape of the standardized estimator ̂𝜃

Let’s say we have two competing estimators, labelled ̂𝛽OLS and ̂𝛽IV

and we want to test if 𝛽∗ = 24

Then we would look at 𝑡 ̂𝛽OLS(24) and 𝑡 ̂𝛽IV(24)
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It should be clear that because ̂𝛽OLS = 𝛽∗ + o𝑝(1)
𝑡 ̂𝛽OLS(𝛽

∗) d→ N(0, 1)

Software packages such as Stata have the terrible habit of reporting
𝑡 ̂𝛽OLS(0) as part of a standard regression output

𝑡 ̂𝛽OLS(0) facilitates a hypothesis test of the null 𝛽
∗ = 0 against the

alternative 𝛽∗ ≠ 0, the critical value is simply ±1.96

It is not clear that the null 𝛽∗ = 0 is interesting at all
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There is an awful practice in applied econometrics to focus on the
value of 𝑡-statistics, or, equivalently, on significance stars

The vast majority of researchers present their estimation tables with
STATA significance stars

• |𝑡| > 1.64 receives one star
• |𝑡| > 1.96 receives two stars
• |𝑡| > 2.58 receives three stars

It’s like the Michelin restaurant guide: the more stars, the better!
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For example, if the return to schooling is estimated to equal 0.14 and
it is statistically significant at the 95% level, then the table will say
0.14∗∗

Many applied papers limit the discussion of their results only to
those coefficient estimates with stars attached, that is, only to those
who are statistically significant

Results that don’t have any stars are often ignored

Our average Monday seminar follows this pattern
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Sadly, PhD students copy this terrible practice

I have had countless conversations with PhD students whose goal it
is to obtain stars in their tables

Because the opinion is: No Stars, No Paper!

The research objective becomes: obtain stars

But often times stars are out of reach
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Try do your estimations without stars or 𝑡-statistics

They are simplistic or reductionist

They seem to apply a binary world:
results are either statistically significant or irrelevant

(Also, they encourage star-hacking:
the strong incentive to obtain stars)

So what should you be doing?

What ought to be best practice?
(But admittedly and unfortunately isn’t)

58 / 59



Report standard errors and confidence intervals

They offer a notion of precision of estimates

Also, never ever say this:
“The estimate is highly significance”
(or variations thereof)
It demonstrates that you don’t understand what you are doing

(Also: don’t use STATA)
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