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Limited dependent variables occur often

Examples

• binary outcome: 𝑌 ∈ {0, 1}
• multinomial outcome: 𝑌 ∈ {0, 1, … , 𝑠}
• integer outcome: 𝑌 ∈ {0, 1, …}
• censored outcome: 𝑌 ∈ R+

Typical method use to estimate LDV models: parametric MLE

Note: we will disregard endogeneity as problem here
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Binary outcomes: illustration of scatterplot
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How about fitting a line?
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Binary outcomes: fitting a line
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The dependent variable is 𝑌 ∈ {0, 1}

It’s easy to see that E (𝑌𝑖|𝑋𝑖) = Pr(𝑌𝑖 = 1|𝑋𝑖)

At the same time E (𝑌𝑖|𝑋𝑖) = 𝑋′
𝑖𝛽 in the linear regression model

Combining gives Pr(𝑌𝑖 = 1|𝑋𝑖) = 𝑋′
𝑖𝛽

This explains the term linear probability model (lpm)

The lpm is often a solid starting point for binary choice analysis

Before you do probit/logit estimation, you should always estimate a
lpm first

Interpretation of 𝛽 in the lpm:
the effect of 𝑋𝑖 on the probability of success Pr (𝑌𝑖 = 1|𝑋𝑖)
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Limitations of the lpm

• Possibly P̂r (𝑌𝑖 = 1|𝑋𝑖) < 0 and P̂r (𝑌𝑖 = 1|𝑋𝑖) > 1
• linearity of the probability restrictive

However: if in an application you have reason to believe that your
probabilities are not at the boundary and that things are locally
linear, then lpm could be really good

If that is not the case, something else is needed

The following trick solves the above two limitations: let
Pr (𝑌𝑖 = 1|𝑋𝑖) = 𝐺(𝑋′

𝑖𝛽)

where 𝐺 is a known cumulative distribution function

Because 𝐺 is a cdf, probabilities are bounded between 0 and 1

It also makes the probability of success evolve nonlinearly
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Binary outcomes: fitting a curve instead
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Good candidates: cumulative distribution functions!
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Which specific functional form should we choose for 𝐺?

People do this

𝐺(𝑠) ∶=
⎧{
⎨{⎩

Φ(𝑠) probit model
Λ(𝑠) logit model,

where

• Φ(𝑠) is the cdf of the standard normal distribution
• Λ(𝑠) ∶= exp(𝑠)

1+exp(𝑠) is the cdf of the logistic distribution with zero
mean and unit variance

Both cdfs look similar, the logistic is heavier in the tails
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How would you estimate 𝛽?

Consider the conditional mean functions

E (𝑌𝑖|𝑋𝑖) =
⎧{
⎨{⎩

𝑋′
𝑖𝛽 linear probability model

𝐺(𝑋′
𝑖𝛽) probit or logit model

Looks like we could do linear regression in case of the lpm and,
perhaps, nonlinear regression in the probit/logit case

Using OLS in the lpm case is good

But in the probit/logit case, people tend to use MLE

Let’s study MLE now
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Big picture: You’ve got an iid random sample (𝑋𝑖, 𝑌𝑖)

The joint likelihood function of the observed data is

𝐿(𝛽) =
𝑁

∏
𝑖=1

Pr (𝑋𝑖 = 𝑥𝑖, 𝑌𝑖 = 𝑦𝑖)

=
𝑁

∏
𝑖=1

Pr (𝑌𝑖 = 𝑦𝑖|𝑋𝑖 = 𝑥𝑖) Pr (𝑋𝑖 = 𝑥𝑖)

Here’s how you think about the involved probabilities:
Pr (𝑌𝑖 = 𝑦|𝑋𝑖 = 𝑥) = 𝑓𝑌|𝑋 (𝑦|𝑥, 𝛽) and Pr (𝑋𝑖 = 𝑥) = 𝑓𝑋 (𝑥)

Key here: 𝛽 doesn’t play a role in the pmf or pdf of 𝑋𝑖

Then

𝐿(𝛽) =
𝑁

∏
𝑖=1

𝑓𝑌|𝑋 (𝑦𝑖|𝑥𝑖, 𝛽) 𝑓𝑋(𝑥𝑖)

And the log likelihood function becomes
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ln 𝐿(𝛽) =
𝑁

∑
𝑖=1

ln 𝑓𝑌|𝑋(𝑦𝑖|𝑥𝑖, 𝛽) +
𝑁

∑
𝑖=1

ln 𝑓𝑋(𝑥𝑖)

You can see that

argmax
𝛽∈𝐵

ln 𝐿(𝛽) = argmax
𝛽∈𝐵

𝑁
∑
𝑖=1

ln 𝑓𝑌|𝑋(𝑦𝑖|𝑥𝑖, 𝛽)

The function ∑𝑁
𝑖=1 ln 𝑓𝑌|𝑋(𝑦𝑖|𝑥𝑖, 𝛽) is called the conditional log

likelihood function

I’m overloading the “ln 𝐿” symbol:

ln 𝐿(𝛽) ∶=
𝑁

∑
𝑖=1

ln 𝑓𝑌|𝑋(𝑦𝑖|𝑥𝑖, 𝛽)

(I’ve snipped off the ∑𝑁
𝑖=1 ln 𝑓𝑋(𝑥𝑖) bit without causing harm)
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In the binary outcome model, what is 𝑓𝑌|𝑋 (𝑦|𝑥, 𝛽) equal to?

Economists like the so called latent variable representation:
𝑌∗

𝑖 = 𝑋′
𝑖𝛽 + 𝑒𝑖,

where 𝑒𝑖 are randomly drawn and have cdf 𝐺

Notice that the latent outcome 𝑌∗
𝑖 is not observed, but instead

𝑌𝑖 =
⎧{
⎨{⎩

1 if 𝑌∗
𝑖 > 0

0 else

is observed
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With 𝑌∗
𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖, it follows

Pr(𝑌𝑖 = 1|𝑋𝑖 = 𝑥) = Pr(𝑌∗
𝑖 > 0|𝑋𝑖 = 𝑥)

= Pr(𝑒𝑖 > −𝑥′𝛽|𝑋𝑖 = 𝑥)
= 1 − 𝐺(−𝑥′𝛽)
= 𝐺(𝑥′𝛽)

and consequently
Pr(𝑌𝑖 = 0|𝑋𝑖 = 𝑥) = 1 − 𝐺(𝑥′𝛽)

Notice: 𝐺 needs to be symmetric at zero, 𝐺(𝑠) = 1 − 𝐺(−𝑠)

It follows that for 𝑦 ∈ {0, 1}
𝑓𝑌|𝑋(𝑦|𝑥, 𝛽) = Pr(𝑌𝑖 = 𝑦|𝑋𝑖 = 𝑥) = 𝐺(𝑥′𝛽)𝑦 ⋅ (1 − 𝐺(𝑥′𝛽))1−𝑦

This is a curious construction: we have shown that the conditional
pmf of 𝑌𝑖 can be expressed in terms of the cdf 𝐺
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The big picture is this: 𝑌𝑖, given 𝑋𝑖 = 𝑥 has a Bernoulli distribution
with probability of success 𝐺(𝑥′𝛽)

The conditional pmf is 𝑓𝑌|𝑋(𝑦|𝑥, 𝛽) = 𝐺(𝑥′𝛽)𝑦 ⋅ (1 − 𝐺(𝑥′𝛽))1−𝑦 for
𝑦 ∈ {0, 1}

The log likelihood for the whole sample becomes

ln 𝐿(𝛽) =
𝑁

∑
𝑖=1

ln 𝑓𝑌|𝑋(𝑦𝑖|𝑥𝑖, 𝛽)

=
𝑁

∑
𝑖=1

ln (𝐺(𝑥′
𝑖𝛽)𝑦𝑖 ⋅ (1 − 𝐺(𝑥′

𝑖𝛽))1−𝑦𝑖)

=
𝑁

∑
𝑖=1

𝑦𝑖 ln 𝐺(𝑥′
𝑖𝛽) +

𝑁
∑
𝑖=1

(1 − 𝑦𝑖) ln(1 − 𝐺(𝑥′
𝑖𝛽))
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Repeating for convenience

ln 𝐿(𝛽) =
𝑁

∑
𝑖=1

𝑦𝑖 ln 𝐺(𝑥′
𝑖𝛽) +

𝑁
∑
𝑖=1

(1 − 𝑦𝑖) ln(1 − 𝐺(𝑥′
𝑖𝛽))

The log likelihood is well behaved

Proposition
Let 𝐺 be the standard normal cdf or the logistic cdf. Then ln 𝐿(𝛽) is
globally concave.

Your computer can find a unique solution for you!
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To find the maximizer, we need to obtain the score function:

𝑆(𝑦|𝑥, 𝛽) =
𝜕 ln 𝑓𝑌|𝑋

𝜕𝛽 (𝑦|𝑥, 𝛽)

Recall
𝑓𝑌|𝑋(𝑦|𝑥, 𝛽) = 𝐺(𝑥′𝛽)𝑦 ⋅ (1 − 𝐺(𝑥′𝛽))1−𝑦

ln 𝑓𝑌|𝑋(𝑦|𝑥, 𝛽) = 𝑦 ln 𝐺(𝑥′𝛽) + (1 − 𝑦) ln(1 − 𝐺(𝑥′𝛽))

Therefore

𝑆(𝑦|𝑥, 𝛽) =
⎧{
⎨{⎩

1
𝐺(𝑥′𝛽) ⋅ 𝑔(𝑥′𝛽) ⋅ 𝑥 if 𝑦 = 1
− 1

1−𝐺(𝑥′𝛽) ⋅ 𝑔(𝑥′𝛽) ⋅ 𝑥 if 𝑦 = 0

= 𝑦 − 𝐺(𝑥′𝛽)
𝐺(𝑥′𝛽) (1 − 𝐺(𝑥′𝛽)) ⋅ 𝑔(𝑥′𝛽) ⋅ 𝑥,

where 𝑔(𝑠) = 𝜕𝐺
𝜕𝑠 (𝑠)
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How would you use the score to find the minimizer?

Tell your computer to find 𝛽 such that ∑𝑁
𝑖=1 𝑆(𝑦𝑖|𝑥𝑖, 𝛽) = 0

(there’s no closed form solution, you need a computer)

That will be the MLE

Of course you need to let your computer know what the functional
forms of 𝑔 and 𝐺 are, but that’s easy

Let’s say you have obtained ̂𝛽ML

What is its distribution?
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Luckily we’ve done all the hard work last week

For ML estimators, we obtained the generic result
√𝑁 ( ̂𝜃ML − 𝜃) d→ N (0, 𝐼(𝜃)−1)

Translating this to the current setting
√𝑁 ( ̂𝛽ML − 𝛽) d→ N (0, 𝐼(𝛽)−1)

where
𝐼(𝛽) = E (𝑆(𝑌𝑖|𝑋𝑖, 𝛽) ⋅ 𝑆(𝑌𝑖|𝑋𝑖, 𝛽)′)

Working this out…
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𝐼(𝛽) = E (𝑆(𝑌𝑖|𝑋𝑖, 𝛽)𝑆(𝑌𝑖|𝑋𝑖, 𝛽)′)
= E (E (𝑆(𝑌𝑖|𝑋𝑖, 𝛽)𝑆(𝑌𝑖|𝑋𝑖, 𝛽)′|𝑋𝑖))

= E⎛⎜⎜
⎝
E⎛⎜⎜

⎝

(𝑌𝑖 − 𝐺(𝑋′
𝑖𝛽))2

𝐺(𝑋′
𝑖𝛽)2 (1 − 𝐺(𝑋′

𝑖𝛽))2 ⋅ 𝑔(𝑋′
𝑖𝛽)2 ⋅ 𝑋𝑖𝑋′

𝑖 ∣𝑋𝑖
⎞⎟⎟
⎠

⎞⎟⎟
⎠

= E⎛⎜⎜
⎝

⎛⎜⎜
⎝

𝑔(𝑋′
𝑖𝛽)2

𝐺(𝑋′
𝑖𝛽)2 (1 − 𝐺(𝑋′

𝑖𝛽))2 ⋅ 𝑋𝑖𝑋′
𝑖
⎞⎟⎟
⎠
E ((𝑌𝑖 − 𝐺(𝑋′

𝑖𝛽))2|𝑋𝑖)
⎞⎟⎟
⎠

= E⎛⎜
⎝

𝑔(𝑋′
𝑖𝛽)2

𝐺(𝑋′
𝑖𝛽) (1 − 𝐺(𝑋′

𝑖𝛽))
⋅ 𝑋𝑖𝑋′

𝑖
⎞⎟
⎠

because 𝑌𝑖|𝑋𝑖 is Bernoulli with Pr(𝑌𝑖 = 1|𝑋𝑖) = 𝐺(𝑋′
𝑖𝛽), so that

E ((𝑌𝑖 − 𝐺(𝑋′
𝑖𝛽))2|𝑋𝑖) = Var (𝑌𝑖|𝑋𝑖) = 𝐺(𝑋′

𝑖𝛽) ⋅ (1 − 𝐺(𝑋′
𝑖𝛽))
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How would you estimate the asymptotic variance?

Repeating from the previous slide

𝐼(𝛽) = E⎛⎜
⎝

𝑔(𝑋′
𝑖𝛽)2

𝐺(𝑋′
𝑖𝛽) (1 − 𝐺(𝑋′

𝑖𝛽))
⋅ 𝑋𝑖𝑋′

𝑖
⎞⎟
⎠

Proposition

1
𝑁

𝑁
∑
𝑖=1

⎛⎜⎜
⎝

𝑔(𝑋′
𝑖 ̂𝛽ML)2

𝐺(𝑋′
𝑖 ̂𝛽ML) (1 − 𝐺(𝑋′

𝑖 ̂𝛽ML))
⋅ 𝑋𝑖𝑋′

𝑖
⎞⎟⎟
⎠

= 𝐼(𝛽) + o𝑝(1)

Now that we know how to estimate 𝛽 and how to obtain its
asymptotic distribution and have a way to estimate it, what do we do
with all that information?

We are not actually interested in 𝛽 per se
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To see this, recall from lecture 4 that we mostly care about
estimating causal effects 𝐶𝑘(𝑋1, … , 𝑋𝑀)

We saw that in the linear regression model, by imposing conditional
mean independence, the causal effect was equal to 𝜕𝜇(𝑋)/𝜕𝑋𝑘 ,
where 𝜇(𝑋) = E(𝑌𝑖|𝑋𝑖)

The 𝛽’s are the causal effects and ̂𝛽OLS are their estimators

Yet in the binary choice model
E(𝑌𝑖|𝑋𝑖 = 𝑥) = Pr(𝑌𝑖 = 1|𝑋𝑖 = 𝑥) = 𝐺(𝑥′𝛽) ≠ 𝑥′𝛽

The function 𝐺 is nonlinear and the 𝛽’s are not the causal effects

We still have conditional mean independence, so presumably we’re
still interested in 𝜕𝜇(𝑋)/𝜕𝑋𝑘
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Our research objective therefore is

𝜕E (𝑌𝑖|𝑋𝑖)
𝜕𝑋𝑖

= 𝜕 Pr (𝑌𝑖 = 1|𝑋𝑖)
𝜕𝑋𝑖

= 𝑔(𝑋′
𝑖𝛽)𝛽 ≠ 𝛽

Due to nonlinearity of 𝐺, the causal effects are functions of 𝑋𝑖

Now, of course, we cannot evaluate an individual causal effect but
look at this instead:

𝜓 = E(𝜕 Pr (𝑌𝑖 = 1|𝑋𝑖)
𝜕𝑋𝑖

) = E (𝑔(𝑋′
𝑖𝛽)𝛽)

It should be easy to estimate 𝜓 via analog estimation:

̂𝜓 = 1
𝑁

𝑁
∑
𝑖=1

(𝑔(𝑋′
𝑖 ̂𝛽ML) ̂𝛽ML)

What is the asymptotic distribution of ̂𝜓?
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Lemma (Delta Method)

Let √𝑁 ( ̂𝜃 − 𝜃) d→ N(0, Ω) with dim 𝜃 = 𝐾. Take a continuously
differentiable function 𝐶 ∶ Θ → R𝑄 where 𝑄 ≤ 𝐾. Then

√𝑁 (𝐶( ̂𝜃) − 𝐶(𝜃)) d→ N (0, 𝑐(𝜃) ⋅ Ω ⋅ 𝑐(𝜃)′) ,

where 𝑐(𝜃) ∶= 𝜕𝐶
𝜕𝜃′ (𝜃) and dim 𝑐(𝜃) = 𝑄 × 𝐾.

The delta method is useful for establishing limiting distributions for
functions of estimators

In our case: 𝐶(𝑏) = 𝑔(𝑋′
𝑖𝑏)𝑏
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The traditional, Heckman style, sample selection model is a
combination of a linear regression and a binary choice model

𝑌∗
𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖

𝐷𝑖 = 1 ⋅ (𝑍′
𝑖𝛾 + 𝑣𝑖 > 0) ,

where 𝑋𝑖 and 𝑍𝑖 could be identical (but don’t have to)

You are interested in 𝛽 but you do not observe (𝑋𝑖, 𝑌∗
𝑖 )

Instead you observe (𝐷𝑖, 𝑋𝑖, 𝑌𝑖, 𝑍𝑖) where

𝑌𝑖 ∶=
⎧{
⎨{⎩

𝑌∗
𝑖 if 𝐷𝑖 = 1

unobserved if 𝐷𝑖 = 0

Typical example:

• 𝑌∗
𝑖 are earnings

• 𝐷𝑖 is a work dummy
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Earnings are observed only for people who work

A lot of people don’t work

Ideally you would like to know, what would these people earn if they
worked?

If you had that information, you could regress 𝑌∗
𝑖 on 𝑋𝑖

But you do not have that information

Instead, you observe earnings only for the sub-sample of workers

That sub-sample may be a selective subset of the entire population

It seems possible that people who work differ systematically from
people who do not work
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To be more concrete, let 𝑋𝑖 be education
(and ignore other regressors)

So you’re interested in the effect of education on earnings

Hopefully you believe that 𝛽 > 0

Suppose that 𝛽 is increasing in education
(returns to education are increasing)

At the same time, let’s suppose people with more education face
higher opportunity cost of not working

This is to say that the sample of workers is not a representative
sample from the entire population

Instead, workers are, on average, more educated

Running a regression of earnings on education would result in
biased estimates
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How do you estimate a sample selection model?

You make a restrictive (yet helpful) assumption about the joint
distribution of the error terms, namely

⎛⎜
⎝

𝑒𝑖
𝑣𝑖

⎞⎟
⎠

∣(𝑋𝑖, 𝑍𝑖) ∼ N⎛⎜
⎝

⎛⎜
⎝

0
0
⎞⎟
⎠

, ⎛⎜
⎝

𝜎2
𝑒 𝜌
𝜌 1

⎞⎟
⎠

⎞⎟
⎠

So we’re assuming that the joint distribution of the errors

• is exactly normal;
• with correlation 𝜌;
• and variances 𝜎2

𝑒 and 𝜎2
𝑣 = 1 (normalization)

How does this help in estimating 𝛽?

Aside: we will show that we can estimate 𝛽, that is, the coefficient
that is representative for the entire population, not merely the
sub-sample for which 𝐷𝑖 = 1
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Joint normality implies
𝑒𝑖 = 𝜌𝑣𝑖 + 𝑤𝑖,

where 𝑤𝑖 is independent of 𝑣𝑖 ∼ N(0, 1)

Crucial fact about the truncated standard normal distribution:

E (𝑣𝑖|𝑣𝑖 > −𝑐) = 𝜙(𝑐)
Φ(𝑐) =∶ 𝜆(𝑐),

where 𝜙 and Φ are the pdf and cdf of the standard normal dstn

The function 𝜆 is called the inverse Mills ratio

Notice that
E (𝑒𝑖|𝐷𝑖 = 1, 𝑋𝑖 = 𝑥, 𝑍𝑖 = 𝑧)

= E (𝑒𝑖|𝑣𝑖 > −𝑧′𝛾)
= 𝜌E (𝑣𝑖|𝑣𝑖 > −𝑧′𝛾) + E (𝑤𝑖|𝑣𝑖 > −𝑧′𝛾)
= 𝜌𝜆 (𝑧′𝛾)

30 / 34



Therefore
E (𝑌𝑖|𝑋𝑖, 𝑍𝑖) = E (𝑌∗

𝑖 |𝐷𝑖 = 1, 𝑋𝑖, 𝑍𝑖)
= 𝑋′

𝑖𝛽 + E (𝑒𝑖|𝐷𝑖 = 1, 𝑋𝑖, 𝑍𝑖)
= 𝑋′

𝑖𝛽 + 𝜌𝜆 (𝑍′
𝑖𝛾)

Given an iid random sample (𝐷𝑖, 𝑌𝑖, 𝑋𝑖, 𝑍𝑖) we face the following
regression model

𝑌𝑖 = 𝑋′
𝑖𝛽 + 𝜌𝜆 (𝑍′

𝑖𝛾) + 𝑤𝑖,

Notice that we do know the functional form of 𝜆

So the above model is a regression model with two sets of
regressors: 𝑋𝑖 and 𝜆(𝑍′

𝑖𝛾)

The corresponding coefficients are 𝛽 and 𝜌
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So the equation
𝑌𝑖 = 𝑋′

𝑖𝛽 + 𝜌𝜆 (𝑍′
𝑖𝛾) + 𝑤𝑖,

suggests running OLS of 𝑌𝑖 on 𝑋𝑖 and 𝜆(𝑍′
𝑖𝛾)

Only problem: we don’t know 𝛾

But we can estimate it via simple probit ML estimation!

Connecting the dots, here is Heckman’s two step estimator

(i) run a probit estimation of 𝐷𝑖 on 𝑍𝑖 and obtain �̂�ML

(ii) run OLS of 𝑌𝑖 on 𝑋𝑖 and 𝜆(𝑍′
𝑖�̂�ML) and obtain ̂𝛽OLS and ̂𝜌OLS

While you can follow these two stages literally in, for example, Stata,
the resulting standard errors will be incorrect

Source of the problem: you are using �̂�ML instead of 𝛾
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This is similar to two stage least squares estimation where you are
using �̂�OLS instead of 𝜋

The correct asymptotic approximation for ̂𝛽OLS needs to take into
account the added sampling uncertainty that comes from using �̂�ML
instead of 𝛾

Another comparison to IV estimation is interesting:

You should NOT be using 𝑋𝑖 = 𝑍𝑖

While it is mechanically possible to do so, because you are sending
𝑍𝑖 through a nonlinear function 𝜆, in practice 𝜆(𝑍′

𝑖�̂�ML) can be highly
correlated with 𝑋𝑖
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And even if it isn’t highly correlated, it is poor practice because your
identification of 𝛽 is solely based on making a very restrictive
assumption on the joint distribution of the error terms

Econometricians say that 𝛽 is only identified through imposing a
specific functional form on the joint error distribution

Instead, it is preferrable to have at least one variable in 𝑍𝑖 that is not
included in 𝑋𝑖

In the IV estimation parlance, this is referred to as an exclusion
restriction

If you do have an exclusion restriction, then your identification rests
on two things: functional form and exclusion restriction

34 / 34


	Limited Dependent Variable (LDV) Models
	Binary Choice Models
	Sample Selection Models


