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Given a bunch of random variables 𝑋1,… ,𝑋𝐾 , 𝑌, we wanted to
express 𝑌 as a linear combination in 𝑋1,… ,𝑋𝐾

A fancy way of saying the same thing:
We want to project 𝑌 onto the subspace spanned by 𝑋1,… ,𝑋𝐾

That projection is labeled Psp(𝑋1,…,𝑋𝐾)𝑌 or 𝑌̂

Instead of Psp(𝑋1,…,𝑋𝐾), we may simply write P𝑋 ,
where 𝑋 ∶= (𝑋1,… ,𝑋𝐾)

′

(Aside: the 𝑋𝑖 can enter non-linearly, for example 𝑋2 ∶= 𝑋2
1)
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Viewing 𝑋1,… ,𝑋𝐾 , 𝑌 as elements of a Hilbert space, we learned the
generic characterization using the inner product:

Using the orthonormal basis 𝑋̃1,… , 𝑋̃𝐾
(such that sp(𝑋̃1,… , 𝑋̃𝐾) = sp(𝑋))

𝑌 = P𝑋𝑌 =
𝐾
∑
𝑖=1

⟨𝑋̃𝑖, 𝑌⟩𝑋̃𝑖

=
𝐾
∑
𝑖=1

E(𝑋̃𝑖 ⋅ 𝑌)𝑋̃𝑖

=
𝐾
∑
𝑖=1

𝛽∗
𝑖 𝑋𝑖

For example, when 𝑋1 = 1 (constant term) and 𝐾 = 2, we saw

𝛽∗
2 = Cov(𝑋2, 𝑌)

Var (𝑋2)
𝛽∗
1 = E𝑌 −𝛽∗

2E𝑋2
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For general 𝐾, we use matrices to express 𝛽∗ ∶= (𝛽1,… , 𝛽𝐾)′

Let 𝑋 ∶= (𝑋1, 𝑋2,… ,𝑋𝐾)′ be a 𝐾 × 1 vector

𝑌 = P𝑋𝑌 =
𝐾
∑
𝑖=1

𝛽∗
𝑖 𝑋𝑖

(⋆)= 𝑋′𝛽∗,

where 𝛽∗ ∶= (E(𝑋𝑋′))−1 E(𝑋𝑌) is a 𝐾 × 1 vector

Aside: equality (⋆) above justified by this bit of linear algebra:

∑𝐾
𝑖=1 𝑥𝑖𝑦𝑖 = 𝑥′𝑦 = 𝑦′𝑥,

for generic vectors 𝑥 and 𝑦:

𝑥 ∶=
⎛⎜⎜⎜⎜
⎝

𝑥1
⋮
𝑥𝐾

⎞⎟⎟⎟⎟
⎠
, 𝑦 ∶=

⎛⎜⎜⎜⎜
⎝

𝑦1
⋮
𝑦𝐾

⎞⎟⎟⎟⎟
⎠
,

or written compactly as 𝑥 ∶= (𝑥1,… , 𝑥𝐾)′ and 𝑦 ∶= (𝑦1,… , 𝑦𝐾)′
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When 𝑋1 = 1, 𝛽∗ can be expressed via covariances

Corollary
When 𝑋 = (1,𝑋2,… ,𝑋𝐾)′, then the projection coefficients are

(𝛽∗
2,… , 𝛽∗

𝐾)′ = Σ−1
𝑋𝑋Σ𝑋𝑌

𝛽∗
1 = E𝑌 −𝛽∗

2E𝑋2 −⋯−𝛽∗
𝐾E𝑋𝐾 ,

where

Σ𝑋𝑋 ∶=
⎡⎢⎢⎢⎢
⎣

𝜎2
2 𝜎23 … 𝜎2𝐾

𝜎32 𝜎2
3 … 𝜎3𝐾

⋮ ⋮ ⋱ ⋮
𝜎𝐾2 𝜎𝐾3 … 𝜎2

𝐾

⎤⎥⎥⎥⎥
⎦

and Σ𝑋𝑌 ∶=
⎡⎢⎢⎢⎢
⎣

Cov(𝑋2, 𝑌)
Cov(𝑋3, 𝑌)

⋮
Cov(𝑋𝐾 , 𝑌)

⎤⎥⎥⎥⎥
⎦

Σ𝑋𝑋 is matrix that collects variances of 𝑋 on the diagonal and
covariances on the off-diagonal

Σ𝑋𝑌 is vector that collects covariances between 𝑋 and 𝑌
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Linear projection representation of 𝑌:
𝑌 = P𝑋𝑌 + (𝑌 − P𝑋𝑌)

=∶ P𝑋𝑌 + 𝑢
= 𝑋′𝛽∗ +𝑢,

The element 𝑌 of a Hilbert space can be reached by adding two
elements:

• an element 𝑋′𝛽∗ from the subspace sp(𝑋) ;
• an element 𝑢 that is orthogonal to sp(𝑋)

Proof that 𝑢 is orthogonal to sp(𝑋), that is, E (𝑋𝑢) = 0:

E(𝑋(𝑌 − P𝑋𝑌)) = E(𝑋(𝑌 −𝑋′ ⋅ E(𝑋𝑋′)−1E(𝑋𝑌)))
= E(𝑋𝑌 −𝑋𝑋′ ⋅ E(𝑋𝑋′)−1E(𝑋𝑌))
= E(𝑋𝑌) − E(𝑋𝑋′)E(𝑋𝑋′)−1E(𝑋𝑌)
= 0
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Using the linear projection representation
𝑌 = 𝑋′𝛽∗ +𝑢

Once you learn that 𝐸(𝑋𝑢) = 0 you know that 𝛽∗ must be the
projection coefficient

You have learned that it exists and is unique

It is important to understand that the definition of the linear
projection model is not restrictive

In particular, E(𝑢𝑋) = 0 is not an assumption, it is definitional

To drive home this point, suppose I claim
𝑌 = 𝑋′𝜃 +𝑤

Next I tell you that E(𝑤𝑋) = 0

You therefore conclude that 𝜃 = 𝛽∗ = (E(𝑋𝑋′))−1 E(𝑋𝑌)
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In summary

Definition (Linear Projection Model)
Given

(i) 𝑋1,… ,𝑋𝐾 , 𝑌 ∈ 𝐿2

(ii) E(𝑋𝑋′) > 0 (positive definite)
(aka, no perfect multicollinearity)

Then the linear projection model is given by
𝑌 = 𝑋′𝛽∗ +𝑢,

where E(𝑢𝑋) = 0 and 𝛽∗ = (E(𝑋𝑋′))−1 E(𝑋𝑌).
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We accept and understand now that the unique projection
coefficient exists

Let’s say we’re interested in knowing the value of 𝛽∗

We just learned that (𝛽∗
2,… , 𝛽∗

𝐾)′ = Σ−1
𝑋𝑋Σ𝑋𝑌

Do we know the objects on the rhs?

These are population variances and covariances

We don’t know these, therefore we don’t know 𝛽∗

How else could we quantify 𝛽∗?
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Let’s indulge ourselves and take a short detour to think about
estimation in an abstract way

This subsection is based on Stachurski A Primer in Econometric
Theory chapters 8.1 and 8.2

We’re dealing with a random variable 𝑍 with distribution 𝑃

We’re interested in a feature of 𝑃

Definition (Feature)
Let 𝑍 ∈ 𝐿2 and 𝑃 ∈ 𝒫 where 𝒫 is a class of distributions on 𝑍.
A feature of 𝑃 is an object of the form 𝛾(𝑃) for some 𝛾 ∶ 𝒫 → 𝑆.

Here 𝑆 is an arbitrarily flexible space (usually R)

Examples of features: means, moments, variances, covariances
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For some reason we are interested in 𝛾(𝑃)

If we knew 𝑃 then we may be able to derive 𝛾(𝑃)

Example: 𝑃 is standard normal and 𝛾(𝑃) = ∫𝑍𝑑𝑃 = 0
(mean of the standard normal distribution)

But we typically don’t know 𝑃

If all we’re interested in is 𝛾(𝑃) then we may not need to know 𝑃
(unless the feature we’re interested in is 𝑃 itself)

Instead, we use a random sample to make an inference about a
feature of 𝑃
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Definition (Random Sample)
The random variables 𝑍1,… , 𝑍𝑁 are called a random sample of
size 𝑁 from the population 𝑃 if 𝑍1,… , 𝑍𝑁 are mutually
independent and all have probability distribution 𝑃.

The joint distribution of 𝑍1,… , 𝑍𝑁 is 𝑃𝑁 by independence

We sometimes say that 𝑍1,… , 𝑍𝑁 are iid copies of 𝑍

We sometimes say that 𝑍1,… , 𝑍𝑁 are iid random variables

By the way: 𝑍𝑖 could be vectors or matrices too
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Definition (Statistic)
A statistic is any function 𝑔 ∶ R𝑁 → R that maps the sample data
somewhere.

The definition of a statistic is deliberately broad

It is a function that maps the sample data somewhere

Where to? Depends on the feature 𝛾(𝑃) you’re interested in

There are countless examples

Illustration: let 𝐾 = 1 (i.e., univariate)
sample mean: 𝑔(𝑍1,… , 𝑍𝑁) = ∑

𝑁

𝑖=1
𝑍𝑖/𝑁 =∶ 𝑍̄𝑁

sample variance: 𝑔(𝑍1,… , 𝑍𝑁) = ∑
𝑁

𝑖=1
(𝑍𝑖 − 𝑍̄𝑁)2/𝑁

sample min: 𝑔(𝑍1,… , 𝑍𝑁) = min {𝑍1,… , 𝑍𝑁}
answer to everything: 𝑔(𝑍1,… , 𝑍𝑁) = 42
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A statistic becomes an estimator when linked to a feature 𝛾(𝑃)

Definition (Estimator)
An estimator 𝛾̂ is a statistic used to infer some feature 𝛾(𝑃) of an
unknown distribution 𝑃.

In other words: an estimator is a statistic with a purpose
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Earlier example: 𝑃 is the standard normal distribution
(but let’s pretend we don’t know this, as is usually the case)

So 𝑍 ∼ N(0, 1)

And we’re interested in E𝑍 so we set 𝛾(𝑃) = E𝑍 = ∫𝑍𝑑𝑃

We have available a random sample {𝑍1,… , 𝑍𝑁}

Each 𝑍𝑖 ∼ N(0, 1), but we don’t know this

But we do know: all 𝑍𝑖 are iid

So they must all have the same mean E𝑍𝑖

What would be an estimator for E𝑍?

Aside: there are infinitely many

What would be a good estimator for E𝑍𝑖?
(perhaps not so many anymore)
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Analogy Principle

A good way to create estimators is the analogy principle

Goldberger explains the main idea of it:

the analogy principle of estimation…proposes that population
parameters be estimated by sample statistics which have the same
property in the sample as the parameters do in the population
(Goldberger, 1968, as cited in Manski, 1988)

That is very unspecific, of course

Manski (1988) wrote an entire book on analog estimation and
explains the analogy principle precisely and comprehensively

But we can illustrate it using our earlier framework
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Definition (Empirical Distribution)
The empirical distribution 𝑃𝑁 of the sample {𝑍1,… , 𝑍𝑁} is the
discrete distribution that puts equal probability 1/𝑁 on each
sample point 𝑍𝑖, 𝑖 = 1,… ,𝑁.

Definition (Analogy Principle)
To estimate 𝛾(𝑃) use 𝛾̂ ∶= 𝛾(𝑃𝑁).

How do we use this in our example?
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We wanted to estimate 𝛾(𝑃) ∶= ∫𝑍𝑑𝑃

According to the analogy principle, we should use ∫𝑍𝑑𝑃𝑁

By definition, the empirical distribution is discrete therefore

∫𝑍𝑑𝑃𝑁 =
𝑁
∑
𝑖=1

𝑍𝑖/𝑁 =∶ 𝑍̄𝑁

This is, of course, the sample average and we use the conventional
notation 𝑍̄𝑁

The analogy principle results in the estimator 𝛾̂ = ∑𝑁
𝑖=1 𝑍𝑖/𝑁

How can we use the analogy principle to estimate 𝛽∗?

20 / 46



Roadmap

Projections (rinse and repeat)

Ordinary Least Squares Estimation

The Problem of Estimation

Definition of the OLS Estimator

Basic Asymptotic Theory (part 1 of 2)

Large Sample Properties of the OLS Estimator

21 / 46



Recall linear projection representation
𝑌 = 𝑋′𝛽∗ +𝑢,

where 𝑋 ∶= (𝑋1,… ,𝑋𝐾)
′, and 𝑋1,… ,𝑋𝐾 , 𝑌 ∈ 𝐿2

We saw that E(𝑢𝑋) = 0 implied 𝛽∗ = (E(𝑋𝑋′))−1 E(𝑋𝑌)

In other words: 𝛽∗ is the projection coefficient

We want to estimate 𝛽∗ using a random sample

The use of a random sample necessitates some changes of notation…
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Until now, the symbol 𝑋 represented the 𝐾−vector of random
variables 𝑋1,… ,𝑋𝐾

𝑋 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑋1
𝑋2
⋮

𝑋𝐾

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where, for example, 𝑋1 was the constant (degenerate) random
variable, 𝑋2 was schooling, and so forth

Now we’re given 𝑁 copies of each of these, necessitating a
double-subscript 𝑋𝑖𝑘 , where 𝑖 = 1,… ,𝑁 and 𝑘 = 1,… , 𝐾

For example, the second copy (when 𝑖 = 2) is

𝑋2 ∶=
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑋21
𝑋22
⋮

𝑋2𝐾

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Do you see how this overloads the 𝑋2 symbol?
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In words: the new 𝑋2 is the second copy of the original 𝐾 random
variables collecting all regressors

We’ll also overload the 𝑋 symbol like so:

𝑋 ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑋11 𝑋12 ⋯ 𝑋1𝐾
𝑋21 𝑋22 ⋯ 𝑋2𝐾
𝑋31 𝑋32 ⋯ 𝑋3𝐾
⋮ ⋮ ⋱ ⋮

𝑋𝑁1 𝑋𝑁2 ⋯ 𝑋𝑁𝐾

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This is a big 𝑁 ×𝐾 matrix

Each row collects one copy of the original 𝐾 random variables

Example: the second row mirrors the transpose of our new 𝑋2
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Notice that

𝑋 ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑋11 𝑋12 ⋯ 𝑋1𝐾
𝑋21 𝑋22 ⋯ 𝑋2𝐾
𝑋31 𝑋32 ⋯ 𝑋3𝐾
⋮ ⋮ ⋱ ⋮

𝑋𝑁1 𝑋𝑁2 ⋯ 𝑋𝑁𝐾

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑋′
1

𝑋′
2

𝑋′
3
⋮

𝑋′
𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Alternatively, 𝑋 ∶= (𝑋1, 𝑋2,… ,𝑋𝑁)′

Similarly, 𝑌1,… , 𝑌𝑁 are iid copies of 𝑌

Define 𝑌 ∶= (𝑌1, 𝑌2,… , 𝑌𝑁)′ to be the 𝑁 × 1 vector collecting all 𝑌𝑖

With this new notation, the random sample is (𝑋1, 𝑌1),… , (𝑋𝑁 , 𝑌𝑁)

Or simpler: (𝑋𝑖, 𝑌𝑖), 𝑖 = 1,… ,𝑁 is a random sample

These are iid copies of the ordered pair (𝑋, 𝑌)

Notice: I’m not pedantic enough to write (𝑋′
𝑖 , 𝑌𝑖)′
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Given the random sample (𝑋𝑖, 𝑌𝑖), 𝑖 = 1,… ,𝑁 we can write the linear
projection representation as

𝑌𝑖 = 𝑋′
𝑖𝛽∗ +𝑢𝑖,

where we have E (𝑢𝑖𝑋𝑖) = 0

Combining findings from last lecture and assignment 1:
𝛽∗ = argmin

𝑏∈R𝐾
E((𝑌𝑖 −𝑋′

𝑖𝑏)
2) (1)

= E(𝑋𝑖𝑋′
𝑖)−1E(𝑋𝑖𝑌𝑖) (2)

Equations (1) and (2) motivate two succinct analog estimators for 𝛽∗:

(1) the ordinary least squares estimator;
(2) the method of moments estimator

Let’s look at both
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If we define 𝛽∗ like so:
𝛽∗ ∶= argmin

𝑏∈R𝐾
E((𝑌𝑖 −𝑋′

𝑖𝑏)
2) ,

then the analogy principle suggests the estimator

argmin
𝑏∈R𝐾

𝑁
∑
𝑖=1

(𝑌𝑖 −𝑋′
𝑖𝑏)

2

This seems very sensible and deserves a famous definition

Definition (Ordinary Least Squares (OLS) Estimator)
The ordinary least squares estimator is

̂𝛽OLS ∶= argmin
𝑏∈R𝐾

𝑁
∑
𝑖=1

(𝑌𝑖 −𝑋′
𝑖𝑏)

2

It is obvious how this estimator obtained its name

27 / 46



When you solve this you get

̂𝛽OLS = ⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑌𝑖
⎞⎟
⎠

Most people, when writing vectors, use the default column notation,
meaning that if I tell you that 𝑋𝑖 is a 𝐾-dimensional vector, you
automatically know it is a 𝐾 × 1 vector
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The second way of defining an estimator for 𝛽∗, via:
𝛽∗ = E(𝑋𝑖𝑋′

𝑖)−1E(𝑋𝑖𝑌𝑖)

The analogy principle suggests the estimator

⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑌𝑖

This also seems very sensible and deserves a familiar name:

Definition (Method of Moments (MM) Estimator)
Applying the analogy principle results in

̂𝛽MM = ⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑌𝑖

You immediately see that ̂𝛽OLS = ̂𝛽MM

I’ll simply refer to it as the OLS estimator
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The OLS estimator does have a compact matrix representation

Using the 𝑁 ×𝐾-matrix 𝑋 and the 𝑁 × 1-vector 𝑌, we can replace the
summation operator like so:

∑𝑋𝑖𝑋′
𝑖 = 𝑋′𝑋

∑𝑋𝑖𝑌𝑖 = 𝑋′𝑌

It follows that ̂𝛽OLS has a nice and short matrix representation:
̂𝛽OLS = (𝑋′𝑋)−1𝑋′𝑌

Now let’s turn to the question: How good is ̂𝛽OLS?

What is goodness?

In the next few weeks we’ll consider things such as

• bias
• variance (small sample and large sample)
• consistency
• distribution (large sample)
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Definition (Convergence in Probability)
A sequence of random variables 𝑍1, 𝑍2,… converges in probability
to a real constant 𝑐 if for every 𝛿 > 0,

lim
𝑁→∞

𝑃(|𝑍𝑁 − 𝑐| > 𝛿) = 0.

We say that 𝑐 is the probability limit of 𝑍𝑁 and write 𝑍𝑁
p→ 𝑐.

Often 𝑐 = 0 and the definition simplifies to lim𝑁→∞ 𝑃(|𝑍𝑁 | > 𝛿) = 0
for every 𝛿 > 0

Contrast this with the following definition

Definition (Bounded in Probability)
A sequence of random variables 𝑍1, 𝑍2,… is bounded in
probability if there exists a finite real number 𝛿 > 0 such that

lim
𝑁→∞

𝑃(|𝑍𝑁 | > 𝛿) = 0.
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Let’s unpack the previous definition:

• we’re studying a sequence of probabilities
𝑃(|𝑍1| > 𝛿), 𝑃(|𝑍2| > 𝛿), …

• we want to know its limit, does it get close to zero?
• this means, does there exist 𝛿 > 0 and integer 𝑁𝜀 such that

𝑃(|𝑍𝑁 | > 𝛿) < 𝜖 for every 𝜖 > 0, and 𝑁 > 𝑁𝜀?

Let 𝑍1, 𝑍2,… be a sequence of iid standard normal random variables

• Recall that Φ is the cdf, and that Φ(−1.96) = 0.025
• Also, by symmetry, 𝑃(|𝑍1| > 𝛿) = 2Φ(−𝛿)
• Let’s pick a small value for 𝜖, say 𝜖 = 0.05
• Pick 𝛿 = 1.96 + 0.01 = 1.97 which results in 𝑃(|𝑍1| > 1.97) < 0.05
• I can make 𝜖 smaller and smaller, and I can always find 𝛿 that
can bound the sequence of probabilities

• It follows that a sequence of iid standard normal random
variables is indeed bounded in probability

That same sequence does not converge in probability to zero. Why?
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Here’s some new notation:

• a sequence 𝑍𝑁 is at most of order 𝑁𝜆

if 𝑍𝑁
𝑁𝜆 is bounded in probability;

we write 𝑍𝑁 = O𝑝(𝑁𝜆)
• a sequence 𝑍𝑁 is order smaller than 𝑁𝜆

if 𝑍𝑁
𝑁𝜆

p→ 0 (converges in probability to zero);
we write 𝑍𝑁 = o𝑝(𝑁𝜆)

The case in which 𝜆 = 0 occurs quite often

• if 𝑍𝑁 is bounded in probability
we write 𝑍𝑁 = O𝑝(1)
and say that 𝑍𝑁 “is big Oh-p-one”

• if 𝑍𝑁 converges in probability to zero
we write 𝑍𝑁 = o𝑝(1)
and say that 𝑍𝑁 “is little Oh-p-one”
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The ‘order’ (Bachmann-Landau) notation is quite handy

Here some useful rules how to work with the new notation:

Lemma
Let 𝑐 be a real constant. Then

𝑐 + o𝑝(1) = O𝑝(1)
𝑐 ⋅ o𝑝(1) = o𝑝(1).

Lemma
Let 𝑊𝑁 = o𝑝(1), 𝑋𝑁 = o𝑝(1), 𝑌𝑁 = O𝑝(1), and 𝑍𝑁 = O𝑝(1).

𝑊𝑁 +𝑋𝑁 = o𝑝(1) 𝑊𝑁 +𝑌𝑁 = O𝑝(1) 𝑌𝑁 +𝑍𝑁 = O𝑝(1)
𝑊𝑁 ⋅ 𝑋𝑁 = o𝑝(1) 𝑊𝑁 ⋅ 𝑌𝑁 = o𝑝(1) 𝑌𝑁 ⋅ 𝑍𝑁 = O𝑝(1)

All results here are quite intuitive
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We’ve got a few more tricks up our sleeves

Theorem (Slutsky Theorem)
If 𝑍𝑁 = 𝑐 + o𝑝(1) and 𝑔(⋅) is continuous at 𝑐 then
𝑔(𝑍𝑁) = 𝑔(𝑐) + o𝑝(1).

In short: 𝑔(𝑐 + o𝑝(1)) = 𝑔(𝑐) + o𝑝(1)

That’s a reason to like the plim, it passes through nonlinear
functions (which is not true for expectation operators)

Corollary
1/(𝑐 + o𝑝(1)) = 1/𝑐 + o𝑝(1) whenever 𝑐 ≠ 0.

All the definitions on the previous slides also apply element by
element to sequences of random vectors or matrices
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Theorem (Weak Law of Large Numbers (WLLN))
Let 𝑍1, 𝑍2,… be independent and identically distributed random
variables with E𝑍𝑖 = 𝜇𝑍 and Var 𝑍𝑖 = 𝜎2

𝑍 < ∞. Then
1
𝑁

𝑁
∑
𝑖=1

𝑍𝑖 = 𝜇𝑍 + o𝑝(1).

Of course, 𝑍̄𝑁 ∶= 1
𝑁 ∑𝑁

𝑖=1 𝑍𝑖 is the sample mean or sample average

WLLN in words:
sample mean converges in probability to population mean

Proving the WLLN is easy, using Chebyshev’s inequality

Notice that we want to show: lim𝑁→∞ 𝑃 (|𝑍̄𝑁 −𝜇𝑍| > 𝛿) = 0,
in other words: the sequence of probabilities
𝑃 (|𝑍̄1 −𝜇𝑍| > 𝛿) , 𝑃 (|𝑍̄2 −𝜇𝑍| > 𝛿) , 𝑃 (|𝑍̄3 −𝜇𝑍| > 𝛿) ,…
approaches zero
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Lemma (Chebyshev’s Inequality)
Let 𝑍 be a random variable with E𝑍2 < ∞. Then for every 𝑐 > 0

𝑃 (|𝑍 − 𝜇𝑍| ≥ 𝑐) ≤ Var (𝑍)
𝑐2

.

Idea: tail probabilities can be bounded via the variance

Recall from undergrad metrics: E(𝑍̄𝑁) = 𝜇𝑍 and Var 𝑍̄𝑁 = 𝜎2
𝑍/𝑁

We’re interested in the sequence of probabilities 𝑃 (|𝑍̄𝑁 −𝜇𝑍| > 𝛿)

Applying Chebyshev’s inequality,

𝑃 (|𝑍̄𝑁 −𝜇𝑍| > 𝛿) ≤ Var 𝑍̄𝑁
𝛿2

=
𝜎2
𝑍

𝑁 ⋅ 𝛿2

which converges to zero as 𝑁 → ∞
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This takes us back to the analogy principle

Remember earlier:

We wanted to estimate the feature 𝛾(𝑃) ∶= E𝑍 = ∫𝑍𝑑𝑃

According to the analogy principle, we should use ∫𝑍𝑑𝑃𝑁

This led to the estimator 𝛾̂ = ∑𝑁
𝑖=1 𝑍𝑖/𝑁

Immediately by the WLLN: 𝛾̂ p→ 𝛾(𝑃)

Definition (Consistency of an Estimator)

An estimator 𝛾̂ for 𝛾 ∶= 𝛾(𝑃) is called consistent if 𝛾̂ p→ 𝛾.

Intuition: if the sample size is large, sample mean is almost equal to
population mean

So there is some hope that the analogy principle leads to consistent
estimators
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Roadmap

Projections (rinse and repeat)

Ordinary Least Squares Estimation

The Problem of Estimation

Definition of the OLS Estimator

Basic Asymptotic Theory (part 1 of 2)

Large Sample Properties of the OLS Estimator
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Let’s first show that the OLS estimator is consistent

̂𝛽OLS ∶=⎛⎜
⎝

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1 𝑁
∑
𝑖=1

𝑋𝑖𝑌𝑖

=𝛽∗ +⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖
⎞⎟
⎠
,

where we have used 𝑌𝑖 = 𝑋′
𝑖𝛽∗ +𝑢𝑖

Big picture to establish consistency:
want to show that second term on rhs is close to zero
(in a probabilistic sense)

Let’s take a look
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Copy and paste from previous slide:

̂𝛽OLS =𝛽∗ +⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖
⎞⎟
⎠

Let’s separately deal with ( 1
𝑁 ∑𝑁

𝑖=1 𝑋𝑖𝑋′
𝑖)

−1
and ( 1

𝑁 ∑𝑁
𝑖=1 𝑋𝑖𝑢𝑖)

By WLLN: 1
𝑁 ∑𝑁

𝑖=1 𝑋𝑖𝑋′
𝑖 = E(𝑋𝑖𝑋′

𝑖) + o𝑝(1)

But need to consider the asymptotic behavior of ( 1
𝑁 ∑𝑁

𝑖=1 𝑋𝑖𝑋′
𝑖)

−1

Use Slutsky’s theorem and pay attention:

⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1

= (E(𝑋𝑖𝑋′
𝑖) + o𝑝(1))

−1
= E(𝑋𝑖𝑋′

𝑖)−1 + o𝑝(1)

Pay attention: E(𝑋𝑖𝑋′
𝑖)−1 might not exist
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This is analogous to a division-by-zero problem in the scalar world

A technical sufficient condition would be that E(𝑋𝑖𝑋′
𝑖) is positive

definite; this guarantees invertibility, and results in:

Lemma
If E(𝑋𝑖𝑋′

𝑖) is positive definite then E(𝑋𝑖𝑋′
𝑖)−1 = O𝑝(1).

A more relatable sufficient condition, in words:
none of the 𝐾 − 1 regressors can be written as a linear function of
the others (provided that a constant is included);
aka, no perfect multicollinearity

Whenever you derive a consistency result, make sure to justify
invertibility!
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Copy and paste from two slides ago:

⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1

= (E(𝑋𝑖𝑋′
𝑖) + o𝑝(1))

−1
= E(𝑋𝑖𝑋′

𝑖)−1 + o𝑝(1)

(⋆)= O𝑝(1) + o𝑝(1) = O𝑝(1)

where (⋆) is justified if E(𝑋𝑖𝑋′
𝑖) is positive definite

Continuing our consistency proof, recall

̂𝛽OLS =𝛽∗ +⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖
⎞⎟
⎠

Let’s deal with ( 1
𝑁 ∑𝑁

𝑖=1 𝑋𝑖𝑢𝑖)

But this is easy, using the WLLN:
1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖 = E(𝑋𝑖𝑢𝑖) + o𝑝(1) = 0+ o𝑝(1) = o𝑝(1)
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Combining, we get:

̂𝛽OLS =𝛽∗ +⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖
⎞⎟
⎠

=𝛽∗ +O𝑝(1) ⋅ o𝑝(1)
=𝛽∗ + o𝑝(1)

In words: ̂𝛽OLS converges in probability to 𝛽∗

This means ̂𝛽OLS is a consistent estimator for the projection
coefficient 𝛽∗

It illustrates the benefit of the analogy principle when it works
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But what is the distribution of ̂𝛽OLS?
• that’s a tricky one
• ̂𝛽OLS = 𝛽∗ + (𝑋′𝑋)−1𝑋′𝑢, what’s the distribution of the second
term on the rhs?

• short answer: we have no idea
• there’s some suspicion that ̂𝛽OLS may have an exact normal
distribution if 𝑢 is normally distributed

• but we don’t know what the distribution of 𝑢 is
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