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Let there be a probability space (Ω,ℱ, 𝑃)

• Ω is the outcome space
• ℱ collects events from Ω
• 𝑃 is a probability measure on ℱ

Example (Only Looks Like Rolling a Die)
• Ω = {1, 2, 3, 4, 5, 6}
• ℱ = {{1, 3, 5} , {2, 4, 6} ,Ω, ∅}
• Consider all 𝐴 ∈ ℱ

𝑃(𝐴) =

⎧{{{{
⎨{{{{⎩

0 if 𝐴 = ∅
1/2 if 𝐴 = {1, 3, 5}
1/2 if 𝐴 = {2, 4, 6}
1 if 𝐴 = Ω

Notice that 𝑃({2}) is not specified
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Definition (Random Variable—first attempt)
A random variable on (Ω,ℱ) is a function 𝑍 ∶ Ω → R.

Example

𝑋(𝜔) =
⎧{
⎨{⎩

18 if 𝜔 even,
24 if 𝜔 odd

Induced probability Pr(𝑋 = 18) ∶= 𝑃({2, 4, 6}) = 1/2

Instead of writing Pr(𝑋 = 18) I will use 𝑃(𝑋 = 18)

Example

𝑌(𝜔) =
⎧{
⎨{⎩

2 if 𝜔 = 6,
7 if 𝜔 = 1

Induced probability Pr(𝑌 = 2) ∶= 𝑃({6}) = ?
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The event {6} is not assigned a probability

Of course we have a reasonable suspicion that 𝑃({6}) should equal
1/6, but strictly speaking this hasn’t been defined two slides earlier

So we have to treat 𝑃({6}) as unknown

To make sure that our random variable is not ill-defined like this we
need to rule out such situations

Here’s a more robust definition
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Definition (Random Variable—second and final attempt)
A random variable on (Ω,ℱ) is a function 𝑍 ∶ Ω → R such that

{𝜔 ∈ Ω ∶ 𝑍(𝑤) ∈ 𝐵} ∈ ℱ for all 𝐵 ∈ ℬ(R).

ℬ(R) is the 𝜎-algebra generated by the closed intervals [𝑎, 𝑏], for
𝑎, 𝑏 ∈ R

ℬ(R) is a rich set containing pretty much every subset of R that we
will ever be dealing with (including intervals, points)

I don’t need you to understand all intricacies here

Bottom line is:
The image 𝑍(𝑤) gets pulled back to an element of ℱ for which
probabilities are well-defined

Using this more robust definition, 𝑌 is not a random variable
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To see this, pick the subset 𝐵 = {2} from ℬ(R)

• pick 𝐵 = {2}
• {𝜔 ∈ Ω ∶ 𝑌(𝜔) = 2} = {6} ∉ ℱ
• same for 𝐵 = {7}

The problem here is that 𝑌 is not ℱ-measurable
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Definition (Distribution or Law)
Given a random variable 𝑍 on a probability space (Ω,ℱ, 𝑃), the
distribution or law of the random variable is the probability
measure defined by

𝜇(𝐵) ∶= 𝑃(𝑍 ∈ 𝐵), 𝐵 ∈ ℬ(R).

We say that 𝜇 is the distribution of 𝑍, or ℒ(𝑍) is the law of 𝑍.

Definition (Distribution Function)
The distribution function of a random variable 𝑍 is defined by

𝐹(𝑧) ∶= 𝜇((−∞, 𝑧]) = 𝑃(𝑍 ≤ 𝑧), 𝑧 ∈ R.

𝐹 is also referred to as cumulative distribution function or cdf.

There is a one-to-one mapping between distribution and cdfs

So we use them interchangeably
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Definition (Weak Convergence)
Let 𝐹 be a distribution function, and {𝐹𝑁} be a sequence of
distribution functions. Then 𝐹𝑁 converges weakly to 𝐹 if
lim𝑁→∞ 𝐹𝑁(𝑧) = 𝐹(𝑧) for each 𝑧 at which 𝐹 is continuous.

We write 𝐹𝑁
w→ 𝐹.

Equivalently we could say 𝜇𝑁
w→ 𝜇 for weak convergence

Definition (Convergence in Distribution)
Let 𝑍 be a random variable, and {𝑍𝑁} be a sequence of random
variables. Then 𝑍𝑁 converges in distribution or law to 𝑍 if 𝐹𝑁

w→ 𝐹.

We write 𝑍𝑁
d→ 𝑍.

Now we turn to a few practical results that will help us soon when we
derive the asymptotic distribution of ̂𝛽OLS
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Theorem (Continuous Mapping Theorem)

If 𝑍𝑁
d→ 𝑍 then 𝑔(𝑍𝑁) d→ 𝑔(𝑍) for continuous 𝑔.

Corollary

If 𝑍𝑁
d→ 𝑁(0,Ω) then

𝐴𝑍𝑁
d→ 𝑁(0,𝐴Ω𝐴′)

(𝐴+ o𝑝(1))𝑍𝑁
d→ 𝑁(0,𝐴Ω𝐴′),

and since 𝑍 ∼ 𝑁(0,Ω) ⇒ 𝑍′Ω−1𝑍 ∼ 𝜒2(dim(𝑍)),

𝑍′
𝑁Ω−1𝑍𝑁

d→ 𝜒2(𝑑𝑖𝑚(𝑍𝑁))

𝑍′
𝑁(Ω+ o𝑝(1))−1𝑍𝑁

d→ 𝜒2(𝑑𝑖𝑚(𝑍𝑁)).
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Another important result for the sample average 𝑍̄𝑁 ∶= ∑𝑁
𝑖=1 𝑍𝑖/𝑁.

Theorem (Central Limit Theorem (CLT))
Let 𝑍1, 𝑍2,… be a sequence of independent and identically
distributed random vectors with E ∥𝑍𝑖∥

2 < ∞. Then
√𝑁 (𝑍̄𝑁 −𝜇𝑍)

d→ N(0, E ((𝑍𝑖 −𝜇𝑍)(𝑍𝑖 −𝜇𝑍)′) ),

where 𝜇𝑧 ∶= E𝑍𝑖.

Notice:

• ‖𝑧‖ ∶= √𝑧′𝑧 is the Euclidian norm here
• E ∥𝑍𝑖∥

2 < ∞ is an economical way of saying that all components
of 𝑍𝑖 have finite means, variances, and covariances

The CLT is a remarkable result

From the WLLN we know that (𝑍̄𝑁 −𝜇𝑍)
p→ 0

At the same time √𝑁 → ∞

Yet their product converges to a normal distribution!
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The restrictions imposed in it don’t seem very strong

For example, it does not matter what distribution the 𝑍𝑖 come from
(as long as E ∥𝑍𝑖∥

2 < ∞)

The sample average multiplied by √𝑁 converges to a normal
distribution
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Conventional terminology with regard to the result
√𝑁 (𝑍̄𝑁 −𝜇𝑍)

d→ N(0,Ω)

where Ω ∶= E ((𝑍𝑖 −𝜇𝑍)(𝑍𝑖 −𝜇𝑍)′)

• 𝑍̄𝑁 is asymptotically normally distributed
• The large sample distribution of 𝑍̄𝑁 is normal
• Ω is the asymptotic variance of √𝑁 (𝑍̄𝑁 −𝜇𝑍)
• Ω/𝑁 is the asymptotic variance of 𝑍̄𝑁
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Primitive usage

• when the sample size 𝑁 is large yet finite
• the sample average 𝑍̄𝑁 almost has a normal distribution
• around the population mean 𝜇𝑍

• with variance Ω/𝑁
• irrespective of the underlying distribution of the 𝑍1, 𝑍2,…

Practical meaning of CLT: for large sample sizes
𝑍̄𝑁

𝑎𝑝𝑝𝑟𝑜𝑥∼ 𝑁(𝜇𝑍, Ω/𝑁)

But is it a good approximation?

How large does 𝑁 need to be?
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Illustration of CLT

The underlying distribution of 𝑍1,… , 𝑍𝑁 is exponential
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Illustration of CLT

The underlying distribution of 𝑍1,… , 𝑍𝑁 is exponential
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We know that ̂𝛽OLS ∈ 𝐿2

We would like to know the exact distribution of ̂𝛽OLS for finite
samples (so-called small sample distribution)

Remember
̂𝛽OLS = 𝛽∗ +(∑

𝑁

𝑖=1
𝑋𝑖𝑋′

𝑖)
−1

∑
𝑁

𝑖=1
𝑋𝑖𝑢𝑖

𝛽∗ = E(𝑋𝑖𝑋′
𝑖)−1E(𝑋𝑖𝑌𝑖)

We suspect that ̂𝛽OLS|𝑋𝑖 ∼ N(⋅, ⋅) if 𝑢𝑖 ∼ N(⋅, ⋅)

In the absence of such a restrictive assumption, we are unable to
determine the exact distribution of ̂𝛽OLS

We approximate exact distribution by asymptotic distribution

Our hope is that the asymptotic (aka large sample) distribution is a
good approximation
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The CLT will be our main tool in deriving the asymptotic distribution
of ̂𝛽OLS

Big picture: we already know that ̂𝛽OLS −𝛽∗ = o𝑝(1)

From what I said earlier, we may suspect that √𝑁( ̂𝛽OLS −𝛽∗) could
converge to a normal distribution

To derive this result, let’s recall the following representation of the
OLS estimator from last week:

̂𝛽OLS =𝛽∗ +⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖
⎞⎟
⎠

Let’s re-arrange terms …
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Copy and past, for convenience:

̂𝛽OLS =𝛽∗ +⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖
⎞⎟
⎠

Then isolating √𝑁( ̂𝛽OLS −𝛽∗):

√𝑁 ( ̂𝛽OLS −𝛽∗) = ⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝
√𝑁 ⎛⎜

⎝
1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖
⎞⎟
⎠
⎞⎟
⎠

Can you see how the CLT can now be applied to the second factor on
the rhs?

Let’s break the rhs up again into its bits and pieces
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We’ve already shown last week (using Slutsky’s theorem) that, given
E(𝑋𝑖𝑋′

𝑖) < ∞,

⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1

= E(𝑋𝑖𝑋′
𝑖)−1 + o𝑝(1)

= O𝑝(1)

For the second factor on the rhs, we know that E (∑𝑋𝑖𝑢𝑖/𝑁) = 0,
then applying the CLT is easy:

⎛⎜
⎝
√𝑁 ⎛⎜

⎝
1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖
⎞⎟
⎠
⎞⎟
⎠

d→ N(0, E(𝑢2
𝑖 𝑋𝑖𝑋′

𝑖))
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Using our tools from basic asymptotic theory (part 2)

Proposition (Asymptotic Distribution of OLS Estimator)

√𝑁 ( ̂𝛽OLS −𝛽∗) = ⎛⎜
⎝
𝑁−1

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝
𝑁−1/2

𝑁
∑
𝑖=1

𝑋𝑖𝑢𝑖
⎞⎟
⎠

d→ N(0,Ω)

where Ω ∶= E(𝑋𝑖𝑋′
𝑖)−1E(𝑢2

𝑖 𝑋𝑖𝑋′
𝑖)E(𝑋𝑖𝑋′

𝑖)−1.

Ω is the asymptotic variance of √𝑁 ( ̂𝛽OLS −𝛽∗)

Ω/𝑁 is the asymptotic variance of ̂𝛽OLS

We take this to mean that ̂𝛽OLS has an approximate normal
distribution with mean 𝛽∗ and variance Ω/𝑁
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The asymptotic variance of √𝑁( ̂𝛽OLS −𝛽∗) is

Ω ∶= E(𝑋𝑖𝑋′
𝑖)−1E(𝑢2

𝑖 𝑋𝑖𝑋′
𝑖)E(𝑋𝑖𝑋′

𝑖)−1

The rhs is a function of unobserved population moments

How would we estimate Ω?

Clearly, we estimate E(𝑋𝑖𝑋′
𝑖) by (1/𝑁)∑𝑁

𝑖=1 𝑋𝑖𝑋′
𝑖

But what about E(𝑢2
𝑖 𝑋𝑖𝑋′

𝑖)?

We don’t know 𝑢𝑖
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If we observed 𝑢𝑖 then we would surely use (1/𝑁)∑𝑁
𝑖=1 𝑢2

𝑖 𝑋𝑖𝑋′
𝑖

That would be an unbiased variance estimator

But we don’t observe the errors 𝑢𝑖, instead we “observe” the
residuals ̂𝑢𝑖 ∶= 𝑌𝑖 −𝑋′

𝑖 ̂𝛽OLS

So how about using (1/𝑁)∑𝑁
𝑖=1 ̂𝑢2

𝑖 𝑋𝑖𝑋′
𝑖 to estimate the middle piece?

While this is in principal the right idea, it results in a biased variance
estimator
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Let’s try understand the source of this bias

First some new tools

Let 𝑀𝑋 ∶= 𝐼𝑁 −𝑃𝑋 with 𝑃𝑋 ∶= 𝑋(𝑋′𝑋)−1𝑋′

Then ̂𝑢 = 𝑀𝑋𝑢

Cool facts about 𝑀𝑋 :
𝑀𝑋 = 𝑀′

𝑋 (symmetric) and 𝑀𝑋𝑀𝑋 = 𝑀𝑋 (idempotent)

The trace of a 𝐾 ×𝐾 matrix is the sum of its diagonal elements:
tr 𝐴 ∶= ∑𝐾

𝑖=1 𝑎𝑖𝑖
Savvy tricks: tr (𝐴𝐵) = tr (𝐵𝐴) and tr (𝐴+ 𝐵) = tr 𝐴+ tr 𝐵

Then

𝜎̂2
𝑢 ∶=

𝑁
∑
𝑖=1

̂𝑢2
𝑖 /𝑁 = tr ( ̂𝑢 ̂𝑢′)

𝑁 = tr ( ̂𝑢′ ̂𝑢)
𝑁 = tr ((𝑀𝑋𝑢)′(𝑀𝑋𝑢))

𝑁

=
tr (𝑢′𝑀′

𝑋𝑀𝑋𝑢)
𝑁 = tr (𝑢′𝑀𝑋𝑢)

𝑁 = tr (𝑀𝑋𝑢𝑢′)
𝑁

Aside: dim𝑀𝑋 = 𝑁 ×𝑁 and dim(𝑢𝑢′) = 𝑁 ×𝑁
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Now studying the conditional expectation
E (𝜎̂2

𝑢 |𝑋) = E (tr (𝑀𝑋𝑢𝑢′)|𝑋) /𝑁
= tr (𝐸 (𝑀𝑋𝑢𝑢′|𝑋)) /𝑁
= tr (𝑀𝑋E (𝑢𝑢′|𝑋)) /𝑁
= 𝜎2

𝑢 ⋅ tr (𝑀𝑋) /𝑁
= 𝜎2

𝑢 (𝑁−𝐾
𝑁 )

< 𝜎2
𝑢 ,

where in the fourth equality we simplified our lives by setting
E(𝑢𝑢′|𝑋) = 𝜎2

𝑢𝐼𝑁 (conditional homoskedasticity)

(The fifth equality will be justified in Assignment 3)

Big picture: 𝜎̂2
𝑢 is downwards biased which is not good

Confidence intervals based on 𝜎̂2
𝑢 would be too narrow

Statistical inference based on 𝜎̂2
𝑢 would be too optimistic
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There is an easy fix!

Use 𝑠2𝑢 ∶= 𝑁
𝑁−𝐾 𝜎̂2

𝑢 = 1
𝑁−𝐾 ∑𝑁

𝑖=1 ̂𝑢2
𝑖 instead

Obviously 𝑠2𝑢 will be unbiased

I’m not particularly concerned about this bias

That’s because 𝑁 should be a much larger number than 𝐾

The whole idea of using asymptotic approximations to finite sample
distributions is to let 𝑁 → ∞ while 𝐾 is fixed

In other words lim𝑁→∞ 𝜎̂2
𝑢 = lim𝑁→∞ 𝑠2𝑢

(asymptotic bias is the same)
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Combining things, we propose the following asymptotic variance
estimator

Definition (Asymptotic Variance Estimator)

Ω̂ = ⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁−𝐾

𝑁
∑
𝑖=1

̂𝑢2
𝑖 𝑋𝑖𝑋′

𝑖
⎞⎟
⎠
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1

Stata calculates Ω̂ when you type something like

regress lwage schooling experience, robust

Textbooks call Ω̂ the heteroskedasticity robust variance estimator

The standard errors derived from Ω̂ are sometimes referred to as
Eicker-Huber-White standard errors
(or some subset permutation of these names)
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Notice: Wooldridge, on page 61, proposes this version

Definition (Asymptotic Variance Estimator)

Ω̂Wool
dridge = ⎛⎜

⎝
1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

̂𝑢2
𝑖 𝑋𝑖𝑋′

𝑖
⎞⎟
⎠
⎛⎜
⎝

1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖𝑋′
𝑖
⎞⎟
⎠

−1

This is NOT what Stata implements
(to the best of my knowledge)

But from what I said earlier, it merely creates rounding error

Asymptotically they are all identical
(because 𝐾 is a finite number)
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