Advanced Econometrics I

Jürgen Meinecke
Lecture 3 of 12

Research School of Economics, Australian National University

Roadmap

Ordinary Least Squares Estimation
Basic Asymptotic Theory (part 2 of 2)
Asymptotic Distribution of the OLS Estimator
Asymptotic Variance Estimation

Let there be a probability space (Ω, \mathcal{F}, P)

- Ω is the outcome space
- Fe collects events from Ω
- P is a probability measure on $\overline{F e}$

Example (Only Looks Like Rolling a Die)

- $\Omega=\{1,2,3,4,5,6\}$
- $\mathcal{F}=\{\{1,3,5\},\{2,4,6\}, \Omega, \varnothing\}$
- Consider all $A \in \mathcal{F}$

$$
P(A)= \begin{cases}0 & \text { if } A=\emptyset \\ 1 / 2 & \text { if } A=\{1,3,5\} \\ 1 / 2 & \text { if } A=\{2,4,6\} \\ 1 & \text { if } A=\Omega\end{cases}
$$

Notice that $P(\{2\})$ is not specified

Definition (Random Variable-first attempt)

A random variable on $\left(\Omega, \mathcal{F}_{\mathcal{F}}\right)$ is a function $Z: \Omega \rightarrow \mathbb{R}$.

Example

$$
X(\omega)= \begin{cases}18 & \text { if } \omega \text { even }, \\ 24 & \text { if } \omega \text { odd }\end{cases}
$$

Induced probability $\operatorname{Pr}(X=18):=P(\{2,4,6\})=1 / 2$
Instead of writing $\operatorname{Pr}(X=18)$ I will use $P(X=18)$

Example

$$
Y(\omega)= \begin{cases}2 & \text { if } \omega=6 \\ 7 & \text { if } \omega=1\end{cases}
$$

Induced probability $\operatorname{Pr}(Y=2):=P(\{6\})=$?

The event $\{6\}$ is not assigned a probability
Of course we have a reasonable suspicion that $P(\{6\})$ should equal $1 / 6$, but strictly speaking this hasn't been defined two slides earlier

So we have to treat $P(\{6\})$ as unknown
To make sure that our random variable is not ill-defined like this we need to rule out such situations

Here's a more robust definition

Definition (Random Variable-second and final attempt)

A random variable on $\left(\Omega, \mathcal{F}_{2}\right)$ is a function $Z: \Omega \rightarrow \mathbb{R}$ such that

$$
\{\omega \in \Omega: Z(w) \in B\} \in \mathcal{F} \quad \text { for all } B \in \mathcal{B}(\mathbb{R}) \text {. }
$$

$\mathcal{B}(\mathbb{R})$ is the σ-algebra generated by the closed intervals $[a, b]$, for $a, b \in \mathbb{R}$
$\mathcal{B}(\mathbb{R})$ is a rich set containing pretty much every subset of \mathbb{R} that we will ever be dealing with (including intervals, points)

I don't need you to understand all intricacies here
Bottom line is:
The image $Z(w)$ gets pulled back to an element of Fer which probabilities are well-defined

Using this more robust definition, Y is not a random variable

To see this, pick the subset $B=\{2\}$ from $\mathcal{B}(\mathbb{R})$

- pick $B=\{2\}$
- $\{\omega \in \Omega: Y(\omega)=2\}=\{6\} \notin \mathcal{F}$
- same for $B=\{7\}$

The problem here is that Y is not \mathcal{F}-measurable

Definition (Distribution or Law)

Given a random variable Z on a probability space (Ω, \mathcal{F}, P), the distribution or law of the random variable is the probability measure defined by

$$
\mu(B):=P(Z \in B), \quad B \in \mathbb{R}(\mathbb{R}) .
$$

We say that μ is the distribution of Z, or $\mathcal{L}(Z)$ is the law of Z.

Definition (Distribution Function)

The distribution function of a random variable Z is defined by

$$
F(z):=\mu((-\infty, z])=P(Z \leq z), \quad z \in \mathbb{R} .
$$

F is also referred to as cumulative distribution function or cdf.
There is a one-to-one mapping between distribution and cdfs
So we use them interchangeably

Definition (Weak Convergence)

Let F be a distribution function, and $\left\{F_{N}\right\}$ be a sequence of distribution functions. Then F_{N} converges weakly to F if $\lim _{N \rightarrow \infty} F_{N}(z)=F(z)$ for each z at which F is continuous. We write $F_{N} \xrightarrow{\mathrm{~W}} F$.

Equivalently we could say $\mu_{N} \xrightarrow{\mathrm{w}} \mu$ for weak convergence

Definition (Convergence in Distribution)

Let Z be a random variable, and $\left\{Z_{N}\right\}$ be a sequence of random variables. Then Z_{N} converges in distribution or law to Z if $F_{N} \xrightarrow{W} F$. We write $Z_{N} \xrightarrow{d} Z$.

Now we turn to a few practical results that will help us soon when we derive the asymptotic distribution of $\hat{\beta}^{\circ L S}$

Theorem (Continuous Mapping Theorem)

If $Z_{N} \xrightarrow{d} Z$ then $g\left(Z_{N}\right) \xrightarrow{d} g(Z)$ for continuous g.

Corollary

$$
\begin{aligned}
& \text { If } Z_{N} \xrightarrow{d} N(0, \Omega) \text { then } \\
& \qquad A Z_{N} \xrightarrow{d} N\left(0, A \Omega A^{\prime}\right) \\
& \qquad\left(A+o_{p}(1)\right) Z_{N} \xrightarrow{d} N\left(0, A \Omega A^{\prime}\right),
\end{aligned}
$$

$$
\text { and since } Z \sim N(0, \Omega) \Rightarrow Z^{\prime} \Omega^{-1} Z \sim \chi^{2}(\operatorname{dim}(Z)),
$$

$$
Z_{N}^{\prime} \Omega^{-1} Z_{N} \xrightarrow{d} \chi^{2}\left(\operatorname{dim}\left(Z_{N}\right)\right)
$$

$$
Z_{N}^{\prime}\left(\Omega+o_{p}(1)\right)^{-1} Z_{N} \xrightarrow{d} \chi^{2}\left(\operatorname{dim}\left(Z_{N}\right)\right)
$$

Another important result for the sample average $\bar{Z}_{N}:=\sum_{i=1}^{N} Z_{i} / N$.

Theorem (Central Limit Theorem (CLT))

Let Z_{1}, Z_{2}, \ldots be a sequence of independent and identically distributed random vectors with $E\left\|Z_{i}\right\|^{2}<\infty$. Then

$$
\sqrt{N}\left(\bar{Z}_{N}-\mu_{Z}\right) \xrightarrow{d} N\left(0, E\left(\left(Z_{i}-\mu_{Z}\right)\left(Z_{i}-\mu_{Z}\right)^{\prime}\right)\right),
$$

where $\mu_{z}:=E Z_{i}$.
Notice:

- $\|z\|:=\sqrt{z^{\prime} z}$ is the Euclidian norm here
- $\mathrm{E}\left\|Z_{i}\right\|^{2}<\infty$ is an economical way of saying that all components of Z_{i} have finite means, variances, and covariances

The CLT is a remarkable result
From the WLLN we know that $\left(\bar{Z}_{N}-\mu_{Z}\right) \xrightarrow{\mathrm{p}} 0$
At the same time $\sqrt{N} \rightarrow \infty$
Yet their product converges to a normal distribution!

The restrictions imposed in it don't seem very strong
For example, it does not matter what distribution the Z_{i} come from (as long as $E\left\|Z_{i}\right\|^{2}<\infty$)

The sample average multiplied by \sqrt{N} converges to a normal distribution

Conventional terminology with regard to the result

$$
\sqrt{N}\left(\bar{Z}_{N}-\mu_{Z}\right) \xrightarrow{d} N(0, \Omega)
$$

where $\Omega:=\mathrm{E}\left(\left(Z_{i}-\mu_{Z}\right)\left(Z_{i}-\mu_{Z}\right)^{\prime}\right)$

- \bar{Z}_{N} is asymptotically normally distributed
- The large sample distribution of \bar{Z}_{N} is normal
- Ω is the asymptotic variance of $\sqrt{N}\left(\bar{Z}_{N}-\mu_{Z}\right)$
- Ω / N is the asymptotic variance of \bar{Z}_{N}

Primitive usage

- when the sample size N is large yet finite
- the sample average \bar{Z}_{N} almost has a normal distribution
- around the population mean μ_{Z}
- with variance Ω / N
- irrespective of the underlying distribution of the Z_{1}, Z_{2}, \ldots

Practical meaning of CLT: for large sample sizes

$$
\bar{Z}_{N} \stackrel{\text { approx }}{\sim} N\left(\mu_{Z}, \Omega / N\right)
$$

But is it a good approximation?
How large does N need to be?

Illustration of CLT

The underlying distribution of Z_{1}, \ldots, Z_{N} is exponential

Illustration of CLT

The underlying distribution of Z_{1}, \ldots, Z_{N} is exponential

Roadmap

Ordinary Least Squares Estimation

Basic Asymptotic Theory (part 2 of 2)

Asymptotic Distribution of the OLS Estimator
Asymptotic Variance Estimation

We know that $\hat{\beta}^{O L S} \in L_{2}$
We would like to know the exact distribution of $\hat{\beta}$ OLS for finite samples (so-called small sample distribution)

Remember

$$
\begin{aligned}
\hat{\beta}^{\text {OLS }} & =\beta^{*}+\left(\sum_{i=1}^{N} X_{i} X_{i}^{\prime}\right)^{-1} \sum_{i=1}^{N} X_{i} u_{i} \\
\beta^{*} & =\mathrm{E}\left(X_{i} X_{i}^{\prime}\right)^{-1} \mathrm{E}\left(X_{i} Y_{i}\right)
\end{aligned}
$$

We suspect that $\hat{\beta}^{0 \mathrm{LS}}{ }_{\mid} X_{i} \sim N(\cdot, \cdot)$ if $u_{i} \sim N(\cdot, \cdot)$
In the absence of such a restrictive assumption, we are unable to determine the exact distribution of $\hat{\beta}$ OLS
We approximate exact distribution by asymptotic distribution
Our hope is that the asymptotic (aka large sample) distribution is a good approximation

The CLT will be our main tool in deriving the asymptotic distribution of $\hat{\beta}$ OLS
Big picture: we already know that $\hat{\beta}^{O L S}-\beta^{*}=o_{p}(1)$
From what I said earlier, we may suspect that $\sqrt{N}\left(\hat{\beta}^{\text {OLS }}-\beta^{*}\right)$ could converge to a normal distribution

To derive this result, let's recall the following representation of the OLS estimator from last week:

$$
\hat{\beta}^{\text {OLS }}=\beta^{*}+\left(\frac{1}{N} \sum_{i=1}^{N} X_{i} X_{i}^{\prime}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} X_{i} u_{i}\right)
$$

Let's re-arrange terms ...

Copy and past, for convenience:

$$
\hat{\beta}^{\mathrm{OLS}}=\beta^{*}+\left(\frac{1}{N} \sum_{i=1}^{N} X_{i} X_{i}^{\prime}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} X_{i} u_{i}\right)
$$

Then isolating $\sqrt{N}\left(\hat{\beta}^{\text {OLS }}-\beta^{*}\right)$:

$$
\sqrt{N}\left(\hat{\beta}^{\mathrm{OLS}}-\beta^{*}\right)=\left(\frac{1}{N} \sum_{i=1}^{N} X_{i} X_{i}^{\prime}\right)^{-1}\left(\sqrt{N}\left(\frac{1}{N} \sum_{i=1}^{N} X_{i} u_{i}\right)\right)
$$

Can you see how the CLT can now be applied to the second factor on the rhs?

Let's break the rhs up again into its bits and pieces

We've already shown last week (using Slutsky's theorem) that, given $\mathrm{E}\left(X_{i} X_{i}^{\prime}\right)<\infty$,

$$
\begin{aligned}
\left(\frac{1}{N} \sum_{i=1}^{N} X_{i} X_{i}^{\prime}\right)^{-1} & =\mathrm{E}\left(X_{i} X_{i}^{\prime}\right)^{-1}+\mathrm{o}_{p}(1) \\
& =\mathrm{O}_{p}(1)
\end{aligned}
$$

For the second factor on the rhs, we know that $\mathrm{E}\left(\sum X_{i} u_{i} / N\right)=0$, then applying the CLT is easy:

$$
\left(\sqrt{N}\left(\frac{1}{N} \sum_{i=1}^{N} X_{i} u_{i}\right)\right) \xrightarrow{\mathrm{d}} \mathrm{~N}\left(0, \mathrm{E}\left(u_{i}^{2} X_{i} X_{i}^{\prime}\right)\right)
$$

Using our tools from basic asymptotic theory (part 2)

Proposition (Asymptotic Distribution of OLS Estimator)

$$
\begin{aligned}
\sqrt{N}\left(\hat{\beta}^{O L S}-\beta^{*}\right)= & \left(N^{-1} \sum_{i=1}^{N} X_{i} X_{i}^{\prime}\right)^{-1}\left(N^{-1 / 2} \sum_{i=1}^{N} X_{i} u_{i}\right) \\
& \xrightarrow{d} N(0, \Omega)
\end{aligned}
$$

where $\Omega:=E\left(X_{i} X_{i}^{\prime}\right)^{-1} E\left(u_{i}^{2} X_{i} X_{i}^{\prime}\right) E\left(X_{i} X_{i}^{\prime}\right)^{-1}$.
Ω is the asymptotic variance of $\sqrt{N}\left(\hat{\beta}^{\mathrm{OLS}}-\beta^{*}\right)$
Ω / N is the asymptotic variance of $\hat{\beta}$ OLS
We take this to mean that $\hat{\beta}^{\text {oLS }}$ has an approximate normal distribution with mean β^{*} and variance Ω / N

Roadmap

Ordinary Least Squares Estimation

> Basic Asymptotic Theory (part 2 of 2)
> Asymptotic Distribution of the OLS Estimator

Asymptotic Variance Estimation

The asymptotic variance of $\sqrt{N}\left(\hat{\beta}^{O L S}-\beta^{*}\right)$ is

$$
\Omega:=\mathrm{E}\left(X_{i} X_{i}^{\prime}\right)^{-1} \mathrm{E}\left(u_{i}^{2} X_{i} X_{i}^{\prime}\right) \mathrm{E}\left(X_{i} X_{i}^{\prime}\right)^{-1}
$$

The rhs is a function of unobserved population moments How would we estimate Ω ?

Clearly, we estimate $\mathrm{E}\left(X_{i} X_{i}^{\prime}\right)$ by $(1 / N) \sum_{i=1}^{N} X_{i} X_{i}^{\prime}$
But what about $\mathrm{E}\left(u_{i}^{2} X_{i} X_{i}^{\prime}\right)$?
We don't know u_{i}

If we observed u_{i} then we would surely use $(1 / N) \sum_{i=1}^{N} u_{i}^{2} X_{i} X_{i}^{\prime}$
That would be an unbiased variance estimator
But we don't observe the errors u_{i}, instead we "observe" the residuals $\hat{u}_{i}:=Y_{i}-X_{i}^{\prime} \hat{\beta}^{\text {OLS }}$
So how about using $(1 / N) \sum_{i=1}^{N} \hat{u}_{i}^{2} X_{i} X_{i}^{\prime}$ to estimate the middle piece? While this is in principal the right idea, it results in a biased variance estimator

Let's try understand the source of this bias
First some new tools
Let $M_{X}:=I_{N}-P_{X}$ with $P_{X}:=X\left(X^{\prime} X\right)^{-1} X^{\prime}$
Then $\hat{u}=M_{X} u$
Cool facts about M_{X} :
$M_{X}=M_{X}^{\prime}$ (symmetric) and $M_{X} M_{X}=M_{X}$ (idempotent)
The trace of a $K \times K$ matrix is the sum of its diagonal elements:
$\operatorname{tr} A:=\sum_{i=1}^{K} a_{i i}$
Savvy tricks: $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ and $\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B$
Then

$$
\begin{aligned}
\hat{\sigma}_{u}^{2} & :=\sum_{i=1}^{N} \hat{u}_{i}^{2} / N=\frac{\operatorname{tr}\left(\hat{u} \hat{u}^{\prime}\right)}{N}=\frac{\operatorname{tr}\left(\hat{u}^{\prime} \hat{u}\right)}{N}=\frac{\operatorname{tr}\left(\left(M_{X} u\right)^{\prime}\left(M_{X} u\right)\right)}{N} \\
& =\frac{\operatorname{tr}\left(u^{\prime} M_{X}^{\prime} M_{X} u\right)}{N}=\frac{\operatorname{tr}\left(u^{\prime} M_{X} u\right)}{N}=\frac{\operatorname{tr}\left(M_{X} u u^{\prime}\right)}{N}
\end{aligned}
$$

Aside: $\operatorname{dim} M_{X}=N \times N$ and $\operatorname{dim}\left(u u^{\prime}\right)=N \times N$

Now studying the conditional expectation

$$
\begin{aligned}
E\left(\hat{\sigma}_{u}^{2} \mid X\right) & =\mathrm{E}\left(\operatorname{tr}\left(M_{X} u u^{\prime}\right) \mid X\right) / N \\
& =\operatorname{tr}\left(E\left(M_{X} u u^{\prime} \mid X\right)\right) / N \\
& =\operatorname{tr}\left(M_{X} \mathrm{E}\left(u u^{\prime} \mid X\right)\right) / N \\
& =\sigma_{u}^{2} \cdot \operatorname{tr}\left(M_{X}\right) / N \\
& =\sigma_{u}^{2}\left(\frac{N-K}{N}\right) \\
& <\sigma_{u}^{2},
\end{aligned}
$$

where in the fourth equality we simplified our lives by setting $\mathrm{E}\left(u u^{\prime} \mid X\right)=\sigma_{u}^{2} I_{N}$ (conditional homoskedasticity)
(The fifth equality will be justified in Assignment 3)
Big picture: $\hat{\sigma}_{u}^{2}$ is downwards biased which is not good Confidence intervals based on $\hat{\sigma}_{u}^{2}$ would be too narrow
Statistical inference based on $\widehat{\sigma}_{u}^{2}$ would be too optimistic

There is an easy fix!
Use $s_{u}^{2}:=\frac{N}{N-K} \hat{\sigma}_{u}^{2}=\frac{1}{N-K} \sum_{i=1}^{N} \hat{u}_{i}^{2}$ instead
Obviously s_{u}^{2} will be unbiased
I'm not particularly concerned about this bias
That's because N should be a much larger number than K
The whole idea of using asymptotic approximations to finite sample distributions is to let $N \rightarrow \infty$ while K is fixed
In other words $\lim _{N \rightarrow \infty} \hat{\sigma}_{u}^{2}=\lim _{N \rightarrow \infty} s_{u}^{2}$
(asymptotic bias is the same)

Combining things, we propose the following asymptotic variance estimator

Definition (Asymptotic Variance Estimator)

$$
\hat{\Omega}=\left(\frac{1}{N} \sum_{i=1}^{N} X_{i} X_{i}^{\prime}\right)^{-1}\left(\frac{1}{N-K} \sum_{i=1}^{N} \hat{u}_{i}^{2} X_{i} X_{i}^{\prime}\right)\left(\frac{1}{N} \sum_{i=1}^{N} X_{i} X_{i}^{\prime}\right)^{-1}
$$

Stata calculates $\widehat{\Omega}$ when you type something like
regress lwage schooling experience, robust Textbooks call $\hat{\Omega}$ the heteroskedasticity robust variance estimator The standard errors derived from $\hat{\Omega}$ are sometimes referred to as Eicker-Huber-White standard errors (or some subset permutation of these names)

Notice: Wooldridge, on page 61, proposes this version

Definition (Asymptotic Variance Estimator)

$$
\hat{\Omega}_{\text {dridge }}^{\text {Wool }}=\left(\frac{1}{N} \sum_{i=1}^{N} X_{i} X_{i}^{\prime}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} \hat{u}_{i}^{2} X_{i} X_{i}^{\prime}\right)\left(\frac{1}{N} \sum_{i=1}^{N} X_{i} X_{i}^{\prime}\right)^{-1}
$$

This is NOT what Stata implements (to the best of my knowledge)

But from what I said earlier, it merely creates rounding error
Asymptotically they are all identical (because K is a finite number)

