Advanced Econometrics I EMET4314/8014 Semester 1, 2025 Juergen Meinecke Research School of Economics ANU

Assignment 1 (due by: Tuesday week 2, 11:00am)

Submission Instructions

Online submission per Wattle file upload only. Only pdf-files accepted. Your solution must be in your own handwriting. You can write on paper and use a suitable app on your phone to scan and upload a pdf-file, or you can use a stylus-type pen on your tablet-type device. List everyone you worked with.

Exercises

Provide transparent derivations. Justify steps that are not obvious. Use self sufficient proofs. Make reasonable assumptions where necessary.

- 1. Consider the space Z = (0, 1] equipped with the metric d(x, y) = |x y|. Consider the following sequence in Z: $x_n = 1/n, n = 1, 2, ...$ Is it a Cauchy sequence? Does it converge?
- 2. Let *X*, *Y* be elements from a Hilbert space. Prove:
 - (i) Cauchy-Schwarz inequality: $|\langle X, Y \rangle| \le ||X|| \cdot ||Y||$
 - (ii) Triangle inequality: $||X + Y|| \le ||X|| + ||Y||$
- 3. Prove: If $E(X^2) < \infty$ and $E(Y^2) < \infty$, then
 - $|\mathbf{E}X| < \infty$ and $|\mathbf{E}Y| < \infty$;
 - $|\mathbf{E}(XY)| < \infty;$
 - $|\operatorname{Cov}(X,Y)| < \infty$.

This is useful: to guarantee existence of covariances, we only need finite second moments. That is why we define L_2 to be the space of random variables with finite second moments.

Related useful fact (for your enjoyment, no need to prove): E $(|Y|^p)<\infty$ implies E $(|Y|^q)<\infty$ for $1\leq q\leq p$ (by Liapunov's inequality).

4. Prove: Cov(X, Y) = Cov(X, E(Y|X))

- 5. Prove: if $X \in \{0, 1\}$ then $\frac{\text{Cov}(X,Y)}{\text{Var}X} = \mathbf{E}(Y|X=1) \mathbf{E}(Y|X=0)$.
- 6. Consider the space L_2 , as defined in the lecture. Let $X, Y \in L_2$. Prove that E(XY) is an inner product.
- 7. Let $X_2, X_3, Y \in L_2$. Find the projection of Y on sp (X_2, X_3) . (What I'm trying to say here is that you are NOT including the constant in the span.)

Use the following Gram-Schmidt orthogonalization procedure to construct an orthonormal set:

Lemma 1 (Gram-Schmidt). Let $V_1, V_2, V_3, ...$ be a linearly independent sequence in an inner product space. Set $U_1 = V_1/||V_1||$, and define recursively:

$$U_{k} = \frac{V_{k} - \sum_{i=1}^{k-1} \langle V_{k}, U_{i} \rangle U_{i}}{\left\| V_{k} - \sum_{i=1}^{k-1} \langle V_{k}, U_{i} \rangle U_{i} \right\|}, \quad \text{for } k = 2, 3, \dots$$

Then $U_1, U_2, U_3, ...$ *is an orthonormal sequence with* $sp(U_1, U_2, ..., U_k) = sp(V_1, V_2, ..., V_k)$.

8. Let $X_1, \ldots, X_K, Y \in L_2$. Use calculus to derive the following:

 $\tilde{\beta} := \operatorname*{argmin}_{b \in \mathbb{R}^{K}} \mathbb{E}\left(\left(Y - X'b \right)^{2} \right),$

where $X := (X_1, \ldots, X_K)'$ so that dim $X = \dim b = K \times 1$.

This demonstrates that $\mathbb{P}_{\operatorname{sp}(X_1,\ldots,X_K)}Y$ can also be obtained by "traditional" methods.

This assignment will be discussed in the week 2 tutorial.