Assignment 7
(due: Tuesday week 8, 11:00am)

Submission Instructions: Same as last week.

Exercises

Provide transparent derivations. Justify steps that are not obvious. Use self sufficient proofs. Make reasonable assumptions where necessary.

The linear model under endogeneity is

$$
\begin{aligned}
& Y=X \beta+e \\
& X=Z \pi+v
\end{aligned}
$$

where $\mathrm{E}\left(e_{i} X_{i}\right) \neq 0$ and $\mathrm{E}\left(e_{i} Z_{i}\right)=0$. Notice $\operatorname{dim} X=N \times K, \operatorname{dim} \beta=K \times 1$, $\operatorname{dim} Z=N \times L$, $\operatorname{dim} \pi=L \times K$, and $\operatorname{dim} v=N \times K$.
The source of the endogeneity is correlation between the two error terms, write

$$
e=v \rho+w
$$

where $\mathrm{E}\left(v_{i} w_{i}\right)=0$. Notice $\operatorname{dim} \rho=K \times 1$, and $\operatorname{dim} w=N \times 1$.
Combining, we obtain

$$
\begin{equation*}
Y=X \beta+v \rho+w \tag{1}
\end{equation*}
$$

(i) You have available a random sample $\left(X_{i}, Y_{i}, v_{i}\right)$. You are running a regression of Y on X and v. Using linear algebra, define the OLS estimator of β in equation (1). Call it $\hat{\beta}_{0}^{\text {OLS }}$.
(Hint: Use the partitioned regression result on the next page.)
(ii) Prove that $\hat{\beta}_{0}^{\mathrm{OLS}}=\beta+\mathrm{o}_{p}(1)$.
(iii) You do NOT have available a random sample (X_{i}, Y_{i}, v_{i}). Instead, you have available a random sample $\left(X_{i}, Y_{i}, Z_{i}\right)$. You cannot run a regression of Y on X and v, but you can instead run a regression of Y on X and \hat{v} where \hat{v} is the first stage residual.
Using \hat{v} in place of v in equation (1), define the OLS estimator of β using linear algebra. Call it $\hat{\beta}_{1}^{\text {OLS }}$.
Prove or disprove: $\hat{\beta}_{1}^{\text {OLS }}=\left(X^{\prime} P_{Z} X\right)^{-1} X^{\prime} P_{Z} Y$.
(iv) Which estimator do you prefer: $\hat{\beta}_{0}^{\text {olS }}$ or $\hat{\beta}_{1}^{\text {OLS }}$? No need to prove anything here, just give a quick intuitive statement.

Partitioned Regression and Frisch-Waugh-Lovell Theorem

Partition the linear regression model like so:

$$
\begin{aligned}
Y & =X \beta+e \\
& =X_{1} \beta_{1}+X_{2} \beta_{2}+e
\end{aligned}
$$

where X_{1} is of dimension $N \times K_{1}$ and X_{2} is of dimension $N \times K_{2}$ with $K_{1}+K_{2}=K$ and $X=\left[\begin{array}{ll}X_{1} & X_{2}\end{array}\right]$. Then how could you estimate β_{1} ? Write down the normal equations

$$
\left[\begin{array}{ll}
X_{1}^{\prime} X_{1} & X_{1}^{\prime} X_{2} \\
X_{2}^{\prime} X_{1} & X_{2}^{\prime} X_{2}
\end{array}\right]\left[\begin{array}{l}
\hat{\beta}_{1}^{\text {OLS }} \\
\hat{\beta}_{2}^{\text {oLS }}
\end{array}\right]=\left[\begin{array}{l}
X_{1}^{\prime} Y \\
X_{2}^{\prime} Y
\end{array}\right]
$$

Solving first for $\hat{\beta}_{2}^{\text {OLS }}$

$$
\begin{aligned}
\hat{\beta}_{2}^{\mathrm{OLS}} & =\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime} Y-\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime} X_{1} \hat{\beta}_{1}^{\mathrm{OLS}} \\
& =\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime}\left(Y-X_{1} \hat{\beta}_{1}^{\text {osS }}\right)
\end{aligned}
$$

Similarly

$$
\hat{\beta}_{1}^{\mathrm{oLS}}=\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}\left(Y-X_{2} \hat{\beta}_{2}^{\mathrm{oLS}}\right)
$$

This has an interesting interpretation:
The OLS estimator $\hat{\beta}_{2}^{\text {OLS }}$ results from regressing Y on X_{2} adjusted for $X_{1} \hat{\beta}_{1}^{\text {OLS }}$. This adjustment is crucial, obviously it wouldn't be quite right to claim that $\hat{\beta}_{2}^{\text {oLS }}$ results from regressing X_{2} on Y only. That would only be true of $X_{2}^{\prime} X_{1}=0$ which means that the sample covariance between the two sets of regressors is zero. Now, doing the math by plugging $\hat{\beta}_{2}^{\text {OLS }}$ into $\hat{\beta}_{1}^{\text {OLS }}$ and
letting $P_{2}:=X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime}$ and $M_{2}=I-P_{2}$:

$$
\begin{aligned}
\hat{\beta}_{1}^{\text {oLS }}= & \left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} Y-\cdots \\
& \left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime} Y+\cdots \\
& \left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime} X_{1} \hat{\beta}_{1}^{\text {oLS }} \\
= & \left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} Y-\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} P_{2} Y+\cdots \\
& \left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} P_{2} X_{1} \hat{\beta}_{1}^{\text {LLS }} \\
= & \left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} Y+\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} P_{2} X_{1} \hat{\beta}_{1}^{\text {OLS }}
\end{aligned}
$$

Multiplying both sides by $X_{1}^{\prime} X_{1}$ and moving terms

$$
\begin{aligned}
X_{1}^{\prime} M_{2} Y & =\left(X_{1}^{\prime} X_{1}\right) \hat{\beta}_{1}^{\text {OLS }}-X_{1}^{\prime} P_{2} X_{1} \hat{\beta}_{1}^{\text {LLS }} \\
& \left.=\left(X_{1}^{\prime} M_{2} X_{1}\right)\right)_{1}^{\text {oLS }}
\end{aligned}
$$

The end result (and also symmetrically for $\hat{\beta}_{2}^{\text {OLS }}$):

$$
\begin{aligned}
& \hat{\beta}_{1}^{\text {oLS }}=\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} Y \\
& \hat{\beta}_{2}^{\text {oLS }}=\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} Y
\end{aligned}
$$

Remember that M_{1} and M_{2} are residual maker matrices:

$$
\begin{array}{rlr}
M_{2} X_{1} & =: \tilde{X}_{1} & \text { is the residual in the regression of } X_{1} \text { on } X_{2} \\
M_{2} Y & =: \tilde{Y} & \text { is the residual in the regression of } Y \text { on } X_{2}
\end{array}
$$

At the same time M_{1} and M_{2} are symmetric and idempotent (that is $M_{1}=M_{1}^{\prime}=M_{1} M_{1}$)

$$
\begin{aligned}
\hat{\beta}_{1}^{\mathrm{OLS}} & =\left(\left(M_{2} X_{1}\right)^{\prime}\left(M_{2} X_{1}\right)\right)^{-1}\left(\left(M_{2} X_{1}\right)^{\prime}\left(M_{2} Y\right)\right) \\
& =\left(\tilde{X}_{1}^{\prime} \tilde{X}_{1}\right)^{-1}\left(\tilde{X}_{1}^{\prime} \tilde{Y}\right) \\
\hat{\beta}_{2}^{\mathrm{OLS}} & =\left(\left(M_{1} X_{2}\right)^{\prime}\left(M_{1} X_{2}\right)\right)^{-1}\left(\left(M_{1} X_{2}\right)^{\prime}\left(M_{1} Y\right)\right) \\
& =\left(\tilde{X}_{2}^{\prime} \tilde{X}_{2}\right)^{-1}\left(\tilde{X}_{2}^{\prime} \tilde{Y}\right)
\end{aligned}
$$

There's a lot of intuition included here. This harks back all the way to Gram Schmidt orthogonalization. To obtain $\hat{\beta}_{1}^{\text {OLS }}$, you regress a version of Y on a version of X_{1}. These versions are \tilde{Y} and \tilde{X}_{1}. These are the versions of Y and X_{1} in which the influence of X_{2} has been removed, or partialled out or netted out. If X_{1} and X_{2} have zero sample covariance then $\tilde{Y}=Y$ and $\tilde{X}_{1}=X_{1}$ and we only need to regress Y on X_{1} to obtain $\hat{\beta}_{1}^{\text {OLS }}$.

