
Advanced Econometrics I Juergen Meinecke
EMET4314/8014 Research School of Economics
Semester 1, 2024 ANU

Assignment 7
(due: Tuesday week 8, 11:00am)

Submission Instructions: Same as last week.

Exercises
Provide transparent derivations. Justify steps that are not obvious. Use self sufficient
proofs. Make reasonable assumptions where necessary.

The linear model under endogeneity is

Y = Xβ + e

X = Zπ + v

where E(eiXi) ̸= 0 and E(eiZi) = 0. Notice dimX = N ×K, dim β = K × 1, dimZ = N × L,
dim π = L×K, and dim v = N ×K.
The source of the endogeneity is correlation between the two error terms, write

e = vρ+ w

where E(viwi) = 0. Notice dim ρ = K × 1, and dimw = N × 1.
Combining, we obtain

Y = Xβ + vρ+ w (1)

(i) You have available a random sample (Xi, Yi, vi). You are running a regression of Y
on X and v. Using linear algebra, define the OLS estimator of β in equation (1). Call
it β̂OLS

0 .
(Hint: Use the partitioned regression result on the next page.)

(ii) Prove that β̂OLS
0 = β + op(1).

(iii) You do NOT have available a random sample (Xi, Yi, vi). Instead, you have available
a random sample (Xi, Yi, Zi). You cannot run a regression of Y on X and v, but you
can instead run a regression of Y on X and v̂ where v̂ is the first stage residual.
Using v̂ in place of v in equation (1), define the OLS estimator of β using linear alge-
bra. Call it β̂OLS

1 .
Prove or disprove: β̂OLS

1 = (X ′PZX)−1X ′PZY .

(iv) Which estimator do you prefer: β̂OLS
0 or β̂OLS

1 ? No need to prove anything here, just
give a quick intuitive statement.



PartitionedRegression andFrisch-Waugh-Lovell Theorem
Partition the linear regression model like so:

Y = Xβ + e

= X1β1 +X2β2 + e

where X1 is of dimension N ×K1 and X2 is of dimension N ×K2 with K1 +K2 = K and
X = [X1 X2]. Then how could you estimate β1? Write down the normal equations[
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Solving first for β̂OLS

2

β̂OLS
2 = (X ′

2X2)
−1X ′
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2X2)

−1X ′
2X1β̂

OLS
1

= (X ′
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Similarly
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This has an interesting interpretation:
The OLS estimator β̂OLS

2 results from regressing Y on X2 adjusted for X1β̂
OLS
1 . This ad-

justment is crucial, obviously it wouldn’t be quite right to claim that β̂OLS
2 results from

regressing X2 on Y only. That would only be true of X ′
2X1 = 0 which means that the

sample covariance between the two sets of regressors is zero. Now, doing the math by
plugging β̂OLS
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1 and
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Multiplying both sides by X ′
1X1 and moving terms
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The end result (and also symmetrically for β̂OLS
2 ):
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Remember thatM1 andM2 are residual makermatrices:

M2X1 =: X̃1 is the residual in the regression of X1 on X2

M2Y =: Ỹ is the residual in the regression of Y on X2

At the same timeM1 andM2 are symmetric and idempotent
(that isM1 = M ′

1 = M1M1)
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There’s a lot of intuition included here. This harks back all the way to Gram Schmidt
orthogonalization. To obtain β̂OLS

1 , you regress a version of Y on a version of X1. These
versions are Ỹ and X̃1. These are the versions of Y andX1 inwhich the influence ofX2 has
been removed, or partialled out or netted out. If X1 and X2 have zero sample covariance
then Ỹ = Y and X̃1 = X1 and we only need to regress Y on X1 to obtain β̂OLS

1 .


