Advanced Econometrics I EMET4314/8014 Semester 1, 2024 Juergen Meinecke Research School of Economics ANU

Assignment 7

(due: Tuesday week 8, 11:00am)

Submission Instructions: Same as last week.

Exercises

Provide transparent derivations. Justify steps that are not obvious. Use self sufficient proofs. Make reasonable assumptions where necessary.

The linear model under endogeneity is

$$Y = X\beta + e$$
$$X = Z\pi + v$$

where $E(e_iX_i) \neq 0$ and $E(e_iZ_i) = 0$. Notice dim $X = N \times K$, dim $\beta = K \times 1$, dim $Z = N \times L$, dim $\pi = L \times K$, and dim $v = N \times K$.

The source of the endogeneity is correlation between the two error terms, write

$$e = v\rho + w$$

where $E(v_i w_i) = 0$. Notice dim $\rho = K \times 1$, and dim $w = N \times 1$. Combining, we obtain

$$Y = X\beta + v\rho + w \tag{1}$$

(i) You have available a random sample (X_i, Y_i, v_i) . You are running a regression of Y on X and v. Using linear algebra, define the OLS estimator of β in equation (1). Call it $\hat{\beta}_0^{\text{OLS}}$.

(Hint: Use the *partitioned regression* result on the next page.)

- (ii) Prove that $\hat{\beta}_0^{\text{OLS}} = \beta + \mathbf{o}_p(1)$.
- (iii) You do NOT have available a random sample (X_i, Y_i, v_i) . Instead, you have available a random sample (X_i, Y_i, Z_i) . You cannot run a regression of Y on X and v, but you can instead run a regression of Y on X and \hat{v} where \hat{v} is the first stage residual.

Using \hat{v} in place of v in equation (1), define the OLS estimator of β using linear algebra. Call it $\hat{\beta}_1^{\text{OLS}}$.

Prove or disprove: $\hat{\beta}_1^{\text{OLS}} = (X' P_Z X)^{-1} X' P_Z Y$.

(iv) Which estimator do you prefer: $\hat{\beta}_0^{\text{OLS}}$ or $\hat{\beta}_1^{\text{OLS}}$? No need to prove anything here, just give a quick intuitive statement.

Partitioned Regression and Frisch-Waugh-Lovell Theorem

Partition the linear regression model like so:

$$Y = X\beta + e$$

= $X_1\beta_1 + X_2\beta_2 + e$

where X_1 is of dimension $N \times K_1$ and X_2 is of dimension $N \times K_2$ with $K_1 + K_2 = K$ and $X = [X_1 \ X_2]$. Then how could you estimate β_1 ? Write down the normal equations

$$\begin{bmatrix} X_1'X_1 & X_1'X_2 \\ X_2'X_1 & X_2'X_2 \end{bmatrix} \begin{bmatrix} \hat{\beta}_1^{\text{OLS}} \\ \hat{\beta}_2^{\text{OLS}} \end{bmatrix} = \begin{bmatrix} X_1'Y \\ X_2'Y \end{bmatrix}$$

Solving first for $\hat{\beta}_2^{OLS}$

$$\begin{split} \hat{\beta}_2^{\text{OLS}} &= (X_2'X_2)^{-1}X_2'Y - (X_2'X_2)^{-1}X_2'X_1\hat{\beta}_1^{\text{OLS}} \\ &= (X_2'X_2)^{-1}X_2'(Y - X_1\hat{\beta}_1^{\text{OLS}}) \end{split}$$

Similarly

$$\hat{\beta}_1^{\text{OLS}} = (X_1' X_1)^{-1} X_1' (Y - X_2 \hat{\beta}_2^{\text{OLS}})$$

This has an interesting interpretation:

The OLS estimator $\hat{\beta}_2^{\text{OLS}}$ results from regressing Y on X_2 adjusted for $X_1\hat{\beta}_1^{\text{OLS}}$. This adjustment is crucial, obviously it wouldn't be quite right to claim that $\hat{\beta}_2^{\text{OLS}}$ results from regressing X_2 on Y only. That would only be true of $X'_2X_1 = 0$ which means that the sample covariance between the two sets of regressors is zero. Now, doing the math by plugging $\hat{\beta}_2^{\text{OLS}}$ into $\hat{\beta}_1^{\text{OLS}}$ and letting $P_2 := X_2(X'_2X_2)^{-1}X'_2$ and $M_2 = I - P_2$:

$$\hat{\beta}_{1}^{\text{OLS}} = (X_{1}'X_{1})^{-1}X_{1}'Y - \cdots (X_{1}'X_{1})^{-1}X_{1}'X_{2}(X_{2}'X_{2})^{-1}X_{2}'Y + \cdots (X_{1}'X_{1})^{-1}X_{1}'X_{2}(X_{2}'X_{2})^{-1}X_{2}'X_{1}\hat{\beta}_{1}^{\text{OLS}} = (X_{1}'X_{1})^{-1}X_{1}'Y - (X_{1}'X_{1})^{-1}X_{1}'P_{2}Y + \cdots (X_{1}'X_{1})^{-1}X_{1}'P_{2}X_{1}\hat{\beta}_{1}^{\text{OLS}} = (X_{1}'X_{1})^{-1}X_{1}'M_{2}Y + (X_{1}'X_{1})^{-1}X_{1}'P_{2}X_{1}\hat{\beta}_{1}^{\text{OLS}}$$

Multiplying both sides by X'_1X_1 and moving terms

$$\begin{split} X_1' M_2 Y &= (X_1' X_1) \hat{\beta}_1^{\text{OLS}} - X_1' P_2 X_1 \hat{\beta}_1^{\text{OLS}} \\ &= (X_1' M_2 X_1) \hat{\beta}_1^{\text{OLS}} \end{split}$$

The end result (and also symmetrically for $\hat{\beta}_2^{\text{OLS}}$):

$$\hat{\beta}_1^{\text{OLS}} = (X_1' M_2 X_1)^{-1} X_1' M_2 Y$$
$$\hat{\beta}_2^{\text{OLS}} = (X_2' M_1 X_2)^{-1} X_2' M_1 Y$$

Remember that M_1 and M_2 are *residual maker* matrices:

$M_2 X_1 =: \tilde{X}_1$	is the residual in the regression of X_1 on X_2
$M_2Y =: \tilde{Y}$	is the residual in the regression of Y on X ₂

At the same time M_1 and M_2 are symmetric and idempotent (that is $M_1 = M'_1 = M_1 M_1$)

$$\hat{\beta}_{1}^{\text{OLS}} = ((M_{2}X_{1})'(M_{2}X_{1}))^{-1} ((M_{2}X_{1})'(M_{2}Y))$$
$$= \left(\tilde{X}_{1}'\tilde{X}_{1}\right)^{-1} \left(\tilde{X}_{1}'\tilde{Y}\right)$$
$$\hat{\beta}_{2}^{\text{OLS}} = ((M_{1}X_{2})'(M_{1}X_{2}))^{-1} ((M_{1}X_{2})'(M_{1}Y))$$
$$= \left(\tilde{X}_{2}'\tilde{X}_{2}\right)^{-1} \left(\tilde{X}_{2}'\tilde{Y}\right)$$

There's a lot of intuition included here. This harks back all the way to Gram Schmidt orthogonalization. To obtain $\hat{\beta}_1^{\text{OLS}}$, you regress a *version* of Y on a *version* of X_1 . These versions are \tilde{Y} and \tilde{X}_1 . These are the versions of Y and X_1 in which the influence of X_2 has been removed, or *partialled out* or *netted out*. If X_1 and X_2 have zero sample covariance then $\tilde{Y} = Y$ and $\tilde{X}_1 = X_1$ and we only need to regress Y on X_1 to obtain $\hat{\beta}_1^{\text{OLS}}$.