THE AUSTRALIAN NATIONAL UNIVERSITY

First Semester Final Examination- June, 2020

Advanced Econometrics I

(EMET 4314/8014)

Reading Time: 0 Minutes
Writing Time: 120 Minutes

Instructions

- Answer all 4 questions of this handout.
- Write on paper or an electronic device (such as an Ipad).
- Handwritten answers only! Do not type anything.
- Work on your answers only between 3:00pm-5:00pm!
- Upload your file at 5:00pm sharp!
- If written on a piece of paper, scan your work and upload to Wattle.
- If using an electronic device, upload your file to Wattle.
- Provide complete, self-contained, and correct answers!
- Make reasonable assumptions where necessary.
- Justify all steps that are not obvious.
- Good luck!

Beginning of Exam Questions

1. [1 mark total] Write the following statement by hand:

I hereby declare

- to uphold the principles of academic integrity, as defined in the University Academic Misconduct Rules;
- that your work in the final exam in no part involves copying, cheating, collusion, fabrication, plagiarism or recycling.

Important

Do NOT work on your exam after 5:00pm!
Scan and upload immediately at 5:00pm!
2. [20 marks total]

Consider the conditional expectation function $\mathrm{E}\left(Y_{i} \mid X_{i}\right)=g\left(X_{i}, \beta\right)$ where

- X_{i} is a scalar
- Y_{i} is binary: $Y_{i} \in\{0,1\}$
(a) [10 marks] Assume $g\left(X_{i}, \beta\right)=X_{i} \beta$. Propose an estimator for β that is unbiased, consistent, and efficient. Prove that it is unbiased and consistent. Derive its asymptotic distribution.
(b) Assume $g\left(X_{i}, \beta\right)=F\left(X_{i} \beta\right)$ for some differentiable function F that is bounded between zero and one.
i. [2 marks] Show that $Y_{i}=F\left(X_{i} \beta\right)+e_{i}$ such that $\mathrm{E}\left(e_{i} \mid X_{i}\right)=0$.
ii. [2 marks] Conditional on X_{i}, the error e_{i} can take on two values

$$
e_{i}= \begin{cases}1-F\left(X_{i} \beta\right) & \text { if } Y_{i}=1 \\ -F\left(X_{i} \beta\right) & \text { if } Y_{i}=0\end{cases}
$$

Show that $\operatorname{Var}\left(e_{i} \mid X_{i}\right)=F\left(X_{i} \beta\right) \cdot\left(1-F\left(X_{i} \beta\right)\right)$.
(Notice that $\operatorname{Pr}\left(Y_{i}=1 \mid X_{i}\right)=\mathrm{E}\left(Y_{i} \mid X_{i}\right)=F\left(X_{i} \beta\right)$.)
iii. [4 marks] Consider the following least squares estimator:

$$
\hat{\beta}:=\underset{b}{\operatorname{argmin}} \sum_{i=1}^{N} \frac{\left(Y_{i}-F\left(X_{i} b\right)\right)^{2}}{\omega_{i}},
$$

where $\omega_{i}:=F\left(X_{i} \beta\right) \cdot\left(1-F\left(X_{i} \beta\right)\right)$.
Why are we dividing by ω_{i} in the objective function? Is $\hat{\beta}$ a feasible estimator? If not, suggest a feasible estimator.
iv. [2 marks] Derive the first order condition for the minimization problem in part iii. Does the first order condition look familiar?
3. [20 marks total - 5 marks each]

Are the following statements true or false? Provide a complete yet short explanation. Use mathematical derivations where necessary.
(Note: you will not receive any credit without providing a correct explanation.)
(a) If $\mathrm{E}\left(X^{2}\right)<\infty$ and $\mathrm{E}\left(Y^{2}\right)<\infty$, then $|\mathrm{E}(X Y)|<\infty$.
(b) Let Y_{1}, \ldots, Y_{N} be independent random variables, each with pdf

$$
f(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(y-\mu)^{2}\right)
$$

The maximizer of the joint log-likelihood function is equal to \bar{Y}.
(c) In the model $Y_{i}=X_{i} \beta+e_{i}$ where X_{i} is a scalar and $\mathrm{E}\left(e_{i} X_{i}\right)=0$ you want to test the null hypothesis $\beta=0$. You suggest the following hypothesis test: draw a number randomly from $\{1,2, \ldots, 10\}$ and reject the null if that number equals 4 .
That hypothesis test has a size of 5%.
(d) Let Y_{i} be independent random variables (with $i=1,2, \ldots$), each with pdf

$$
f(y)= \begin{cases}\frac{1}{c} & \text { for } y \in(0, c) \\ 0 & \text { elsewhere }\end{cases}
$$

for some $0<c<\infty$. Then Y_{1}, Y_{2}, \ldots is bounded in probability.

Important

Do NOT work on your exam after 5:00pm! Scan and upload immediately at 5:00pm!

4. [20 marks total]

Consider the moment conditions $\mathrm{E}\left(\psi\left(W_{i}, \theta_{0}\right)\right)=0$, where W_{i} represents the variables of your model. The function $\psi\left(W_{i}, \cdot\right)$ is twice continuously differentiable. Let $\operatorname{dim} \psi\left(W_{i}, \theta_{0}\right)=\operatorname{dim} \theta_{0}=K \times 1$.
An obvious analog estimator for θ_{0} is $\hat{\theta}$ which solves $(1 / N) \sum_{i=1}^{N} \psi\left(W_{i}, \hat{\theta}\right)=0$.
You may assume throughout that $\hat{\theta}=\theta_{0}+o_{p}(1)$.
To establish the asymptotic distribution of $\hat{\theta}$ you will use a mean value theorem approximation, like so:

$$
0=(1 / N) \sum_{i=1}^{N} \psi\left(W_{i}, \theta_{0}\right)+\left(\frac{1}{N} \sum_{i=1}^{N} \frac{\partial \psi}{\partial \theta^{\prime}}\left(W_{i}, \tilde{\theta}\right)\right)\left(\hat{\theta}-\theta_{0}\right) .
$$

(a) [2 marks] State the approximate distribution of $(1 / \sqrt{N}) \sum_{i=1}^{N} \psi\left(W_{i}, \theta_{0}\right)$? (This should be brief.)
(b) [2 marks] What is the probability limit of $\frac{1}{N} \sum_{i=1}^{N} \frac{\partial \psi}{\partial \theta^{\prime}}\left(W_{i}, \tilde{\theta}\right)$?
(c) [2 marks] The above mean value approximation can be used to obtain the following asymptotic distribution:

$$
\sqrt{N}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{\mathrm{d}} \mathrm{~N}\left(0, P Q P^{\prime}\right) .
$$

Determine P and Q here.
(Note: I am NOT asking you to derive the asymptotic distribution.)

```
Note: This exercise continues on next page ...
```


Important

Do NOT work on your exam after 5:00pm! Scan and upload immediately at 5:00pm!

Now consider the model

$$
\begin{aligned}
Y_{i} & =\beta_{0} X_{i}+e_{i} \\
X_{i} & =Z_{i}^{\prime} \pi_{0}+v_{i}
\end{aligned}
$$

where $\operatorname{dim}\left(X_{i}\right)=1 \times 1$ and $\operatorname{dim} Z_{i}=L \times 1$ with $L>1$. Let

$$
\binom{e_{i}}{v_{i}} \left\lvert\, Z_{i} \sim \mathrm{~N}\left(\binom{0}{0},\left(\begin{array}{cc}
\sigma_{e}^{2} & \sigma_{e v} \\
\sigma_{e v} & \sigma_{v}^{2}
\end{array}\right)\right) .\right.
$$

Let

$$
\psi\left(W_{i}, \beta, \pi\right):=\binom{\psi_{1}\left(W_{i}, \pi\right)}{\psi_{2}\left(W_{i}, \pi, \beta\right)}
$$

where

$$
\begin{aligned}
\psi_{1}\left(W_{i}, \pi\right) & :=Z_{i}\left(X_{i}-Z_{i}^{\prime} \pi\right) \\
\psi_{2}\left(W_{i}, \beta, \pi\right) & =\left(Z_{i}^{\prime} \pi\right) \cdot\left(Y_{i}-\beta\left(Z_{i}^{\prime} \pi\right)\right)
\end{aligned}
$$

For brevity we may also write $\psi(\beta, \pi)$ instead of $\psi\left(W_{i}, \beta, \pi\right)$.
(d) [2 marks] Let $u_{i}:=Y_{i}-\beta_{0}\left(Z_{i}^{\prime} \pi_{0}\right)$. Derive the distribution of $\left.\binom{u_{i}}{v_{i}} \right\rvert\, Z_{i}$.
(e) $[1$ marks $]$ Let $\theta:=\left(\pi^{\prime}, \beta\right)^{\prime}$. Derive $\frac{\partial \psi}{\partial \theta^{\prime}}\left(\beta_{0}, \pi_{0}\right)$.
(f) [3 marks] Using $\Gamma:=\mathrm{E}\left(Z_{i} Z_{i}^{\prime}\right)$, determine $\mathrm{E}\left(\frac{\partial \psi}{\partial \theta^{\prime}}\left(\beta_{0}, \pi_{0}\right)\right)$.
(g) [2 marks] Determine $\left(\mathrm{E}\left(\frac{\partial \psi}{\partial \theta^{\prime}}\left(\beta_{0}, \pi_{0}\right)\right)\right)^{-1}$.

Hint: make use of

$$
\left(\begin{array}{ll}
A & 0 \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A^{-1} & 0 \\
-D^{-1} C A^{-1} & D^{-1}
\end{array}\right)
$$

(h) [3 marks] Determine $\mathrm{E}\left(\psi\left(\beta_{0}, \pi_{0}\right) \cdot \psi\left(\beta_{0}, \pi_{0}\right)^{\prime}\right)$.
(i) [3 marks] Let $\hat{\beta}$ be the obvious analog estimator of β_{0}. What is the asymptotic distribution of $\sqrt{N}\left(\hat{\beta}-\beta_{0}\right)$? Be specific about its asymptotic variance! (Do not provide the asymptotic variance of $\hat{\pi}$.)

