THE AUSTRALIAN NATIONAL UNIVERSITY

First Semester Final Examination–June, 2021

Advanced Econometrics I

(EMET 4314/8014)

Reading Time: 0 Minutes Writing Time: 120 Minutes

 r .			£					٠			
11	n	C	t.	r	11	C	t	1.	\cap	n	C
		D.	U	T.	u	.U	U.	г	U	11	L K

- Answer all 4 questions of this handout.
- Write on paper or an electronic device (such as an Ipad).
- Handwritten answers only! Do not type anything.
- Work on your answers only between 9:30am–11:30am.
- If written on a piece of paper, scan your work and upload to Wattle.
- If using an electronic device, upload your file to Wattle.
- Upload your file as soon as possible after 11:30am.
 You have at most 15 minutes to scan and upload your document.
- Provide complete, self-contained, and correct answers.
- Make reasonable assumptions where necessary.
- Justify all steps that are not obvious.

Beginning of Exam Questions

1. [1 mark total] Write the following statement by hand:

I hereby declare

- to uphold the principles of academic integrity, as defined in the University Academic Misconduct Rules;
- that your work in the final exam in no part involves copying, cheating, collusion, fabrication, plagiarism or recycling.

2. [20 marks total]

Consider the conditional expectation function $E(Y_i|X_i) = g(X_i,\beta)$ where

- $\circ \dim X_i = \dim \beta = K \times 1$
- $\circ \ Y_i \ \text{is binary:} \ Y_i \in \left\{0,1\right\}$
- (a) [8 marks]

Assume $g(X_i, \beta) = X'_i\beta$. Prove that the OLS estimator for β is unbiased and consistent. Derive its asymptotic distribution.

(Use stochastic order notation, such as " $o_p(1)$ ", as much as possible. Provide detailed and comprehensive derivations!)

- (b) Assume $g(X_i, \beta) = \Phi(X'_i\beta)$, where Φ is the cdf of the standard normal distribution.
 - (i) [2 marks] Show that $Y_i = \Phi(X'_i\beta) + e_i$ such that $E(e_i|X_i) = 0$.
 - (ii) [2 marks] Show that Var $(e_i|X_i) = \Phi(X'_i\beta) \cdot (1 \Phi(X'_i\beta))$.
 - (iii) [2 marks] Consider the following least squares estimator:

$$\hat{\beta} := \underset{b}{\operatorname{argmin}} \sum_{i=1}^{N} \frac{\left(Y_i - \Phi(X'_i b)\right)^2}{\omega_i},$$

where $\omega_i := \Phi(X'_i\beta) \cdot (1 - \Phi(X'_i\beta)).$

The estimator $\hat{\beta}$ is not feasible. Suggest a feasible estimator.

- (iv) [2 marks] Derive the first order condition for the minimization problem in part (iii).
- (c) [4 marks]

Discuss briefly: What are the advantages of using $g(X_i, \beta) = \Phi(X'_i\beta)$ instead of $g(X_i, \beta) = X'_i\beta$?

3. [25 marks total]

Are the following statements true or false? Provide a complete explanation. Use mathematical derivations where necessary.

(Note: you will not receive any credit without providing a correct explanation.)

(a) [2 marks]

Let Y_1, \ldots, Y_{200} be a random sample with $E(Y_i) = \mu$ and $0 < \text{Var } Y_i < \infty$. Define $\bar{Y} := \sum_{i=1}^{200} Y_i/200$. Then $(Y_2 + Y_4 + \cdots + Y_{200})/100$ is an unbiased estimator for μ with a variance greater than that of \bar{Y} .

(b) [5 marks]

Let Y_1, \ldots, Y_N be independent random variables, each with pdf

$$f(y) = (1 - \alpha)^{1 - y} \alpha^{y}, \quad \text{for } y \in \{0, 1\}, \quad 0 \le \alpha \le 1,$$

and zero elsewhere. The maximum likelihood estimator of α is equal to the sample average \bar{Y} .

(c) [8 marks]

Consider the model $Y_i = X_i\beta + e_i$ where X_i is a scalar, $E(e_iX_i) = 0$, and the error is homoskedastic. Let $\hat{\beta}$ be the OLS estimator of β . You want to test the null hypothesis $\beta = 0$. You suggest the following hypothesis test: Reject the null whenever the absolute value of

$$\sqrt{N}\hat{eta}\cdot rac{\sqrt{\sum_{i=1}^N X_i^2}}{\sqrt{\sum_{i=1}^N (Y_i-X_i\hat{eta})^2}}$$

exceeds 1.96. That hypothesis test has a size of 5%.

(d) [10 marks]

Let Y_1, Y_2, \ldots be random variables with $E(Y_i) = \mu$ and $Var(Y_i) = \sigma_i^2 < \infty$ for all *i*. Let $Cov(Y_s, Y_t) = 0$ whenever $s \neq t$. Then $\sum_{i=1}^N Y_i / N = \mu + o_p(1)$.

Do NOT work on your exam after 11:30am! Scan and upload immodiately at 11:30am!

4. [25 marks total]

Consider the moment conditions $E(\psi(W_i, \theta_0)) = 0$, where W_i represents the variables of your model. The function $\psi(W_i, \cdot)$ is twice continuously differentiable. Let $\dim \psi(W_i, \theta_0) = \dim \theta_0 = K \times 1$.

An obvious analog estimator for θ_0 is $\hat{\theta}$ which solves $(1/N) \sum_{i=1}^N \psi(W_i, \hat{\theta}) = 0$.

You may assume throughout that $\hat{\theta} = \theta_0 + o_p(1)$.

To establish the asymptotic distribution of $\hat{\theta}$ you will use a mean value theorem approximation, like so:

$$0 = (1/N) \sum_{i=1}^{N} \psi(W_i, \theta_0) + \left(\frac{1}{N} \sum_{i=1}^{N} \frac{\partial \psi}{\partial \theta'}(W_i, \tilde{\theta})\right) \left(\hat{\theta} - \theta_0\right).$$

(a) [2 marks] State the approximate distribution of $(1/\sqrt{N}) \sum_{i=1}^{N} \psi(W_i, \theta_0)$. (Brief.)

- (b) [2 marks] What is the probability limit of $\frac{1}{N} \sum_{i=1}^{N} \frac{\partial \psi}{\partial \theta'}(W_i, \tilde{\theta})$?
- (c) [2 marks] The above mean value approximation can be used to get this asymptotic distribution: $\sqrt{N}(\hat{\theta} \theta_0) \xrightarrow{d} N(0, PQP')$. Determine P and Q.

For the model $Y_i = X_i \theta_0 + e_i$, with X_i a scalar, and $E(e_i | X_i) = 0$, consider the estimator

$$\theta^* := \operatorname*{argmin}_{t \in \mathbb{R}} \left\{ \left(\sum_{i=1}^N (Y_i - X_i t)^2 \right) + c \cdot t^2 \right\},$$

where c is a known positive constant.

- (d) [3 marks] Determine the function ψ for the estimator θ^* .
- (e) [3 marks] Solve for θ^* .
- (f) [4 marks] Is θ^* unbiased?

(g) [2 marks] Derive
$$\frac{\partial \psi}{\partial \theta'}(W_i, \theta_0)$$
.

(h) [2 marks] Determine $E\left(\frac{\partial\psi}{\partial\theta'}(W_i,\theta_0)\right)$.

- (i) [2 marks] Determine $E(\psi(W_i, \theta_0) \cdot \psi(W_i, \theta_0)')$.
- (j) [3 marks] Derive the asymptotic distribution and variance of $\sqrt{N} \left(\theta^* \theta_0\right)$.

