
Advanced Econometrics I

Jürgen Meinecke
Lecture 12 of 12

Research School of Economics, Australian National University

1 / 27



Roadmap

Extremum Estimators, M-Estimation

Motivation

Consistency

Asymptotic Distribution

Asymptotic Variance Estimation

Last Slide

2 / 27



Many estimators share a common structure

They are members of a broader class

This commonality can be useful for deriving consistency and
asymptotic normality for a broader class of estimators

Instead of deriving asymptotic results for individual estimators,
we only need to establish it once for the broader class

The class of estimators that we are looking at today are those
estimators that maximize an objective function that depends on
data and sample size

This class of estimators is called extremum estimators or
M-estimators

Today’s lecture is a summary of Newey and McFadden, Handbook of
Econometrics, chapter 36

Wooldridge’s graduate textbook also has a good discussion
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The nice thing about today’s lecture is that it brings together all our
estimators from earlier in the semester

I will show how they can be regarded as special cases of a more
general framework

We will establish consistency and asymptotic normality results for
this more general framework

As a result, consistency and asymptotic normality follow for the
special cases

Another nice thing of today’s lecture is that it builds you a bridge to
EMET8008

Thomas will teach you GMM estimation which is closely related to
the framework presented here

(Unfortunately, EMET8008 won’t be offered next semester)
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Definition (Extremum Estimator)
Given data 𝑊𝑖, 𝑖 = 1, … , 𝑁, an estimator ̂𝜃EE is called extremum
estimator if there is an objective function 𝑄𝑁(𝑊𝑖, 𝜃) such that

̂𝜃EE ∶= argmax
𝜃∈Θ

𝑄𝑁(𝑊𝑖, 𝜃).

Often the objective function is a sample average:

𝑄𝑁(𝑊𝑖, 𝜃) = 1
𝑁

𝑁
∑
𝑖=1

𝑞(𝑊𝑖, 𝜃)

Huber (1981) calls such estimators “maximum likelihood type”
estimators, which justifies the next definition

Definition (M-Estimator)
̂𝜃M ∶= argmax

𝜃∈Θ
1
𝑁 ∑𝑁

𝑖=1 𝑞(𝑊𝑖, 𝜃).

Aside: Wooldridge defines ̂𝜃M as a minimizer instead
(irrelevant, can simply put a minus sign in front)
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The class of extremum estimators contains the class of M-estimators

All our estimators from this semester satisfy this general structure

They are extremum estimators and M-estimators

̂𝜃EE ∶= argmax
𝜃∈Θ

1
𝑁

𝑁
∑
𝑖=1

𝑞(𝑊𝑖, 𝜃)
⏟⏟⏟⏟⏟⏟⏟

𝑄𝑁(𝑊𝑖,𝜃)

with
OLS 𝑞(𝑊𝑖, 𝜃) = −(𝑌𝑖 − 𝑋′

𝑖𝜃)2

IV 𝑞(𝑊𝑖, 𝜃) = −(𝑌𝑖 − �̂�′𝑍𝑖𝜃)2

ML 𝑞(𝑊𝑖, 𝜃) = ln 𝑓𝑌(𝑌𝑖|𝜃)

The asymptotic properties of ̂𝜃EE depend on the limit behavior of
𝑄𝑁(𝑊𝑖, 𝜃)
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Using the WLLN, let’s look at the probability limit of 𝑄𝑁(𝑊𝑖, 𝜃)

Denote it by 𝑄0(𝜃): 𝑄𝑁(𝑊𝑖, 𝜃) p→ 𝑄0(𝜃)

In our applications:
OLS 𝑄0(𝜃) ∶= −E(𝑌𝑖 − 𝑋′

𝑖𝜃)2

IV 𝑄0(𝜃) ∶= −E(𝑌𝑖 − 𝜋′𝑍𝑖𝜃)2

ML 𝑄0(𝜃) ∶= E (ln 𝑓𝑌(𝑌𝑖|𝜃))

While we have pointwise convergence at all 𝜃 ∈ Θ by the WLLN, for a
generic consistency proof we need something stronger…
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Definition (Uniform Convergence in Probability)
A sequence 𝑄𝑁(𝑊𝑖, 𝜃) is said to converge uniformly in probability
to 𝑄0(𝜃) if

sup
𝜃∈Θ

∣𝑄𝑁(𝑊𝑖, 𝜃) − 𝑄0(𝜃)∣ = o𝑝(1).

Uniform implies pointwise convergence, not vice versa

Theorem (Consistency of Extremum Estimators)
If there is a function 𝑄0(𝜃) such that

(i) 𝑄0(𝜃) is uniquely maximized at 𝜃0;
(ii) Θ is compact;
(iii) 𝑄0(𝜃) is continuous;
(iv) 𝑄𝑁(𝑊𝑖, 𝜃) converges uniformly in probability to 𝑄0(𝜃);

then ̂𝜃EE = 𝜃0 + o𝑝(1).
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Sketch of proof: consistency
(to get a rough idea how these four conditions are used)

• uniform convergence, roughly, means that 𝑄𝑁 is very similar to
𝑄0 when 𝑁 is large

• ̂𝜃 as the maximizer of 𝑄𝑁 is then also a maximizer of 𝑄0

• but then, for every 𝜀 > 0, 𝑄0( ̂𝜃) > 𝑄0(𝜃0) − 𝜀 (⋆)
• we still need to show that this implies that ̂𝜃 is close to 𝜃0
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• from previous slide: 𝑄0( ̂𝜃) > 𝑄0(𝜃0) − 𝜀 (⋆)
• pick any closed subset of Θ not containing 𝜃0
(remove an open set containing 𝜃0 from Θ, the set that remains
is compact because Θ is compact)

• by (iii) we can use Weierstrass’ theorem:
a continuous function over a compact set attains a maximum

• denote this maximum (over the compact subset) by 𝑄0(𝜃∗)
• by (i): 𝑄0(𝜃0) − 𝑄0(𝜃∗) > 0
• set 𝜀 = 𝑄0(𝜃0) − 𝑄0(𝜃∗) in (⋆), therefore 𝑄0( ̂𝜃) > 𝑄0(𝜃∗)
• then ̂𝜃 must be from the open set containing 𝜃0

• it follows that ̂𝜃 p→ 𝜃0

(for details consult proof of Theorem 2.1 in Newey and McFadden)
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The theorem gives four conditions

How should we interpret them?

Distinguish substantive conditions from regularity conditions

Conditions (i) and (ii) are substantive, meaning they could be
restrictive in some applications

Conditions (iii) and (iv) are regularity conditions, meaning they are
satisfied in many applications

In addition, we can think of conditions to be primitive or
non-primitive

A condition is called primitive, if it is easy to interpret
(akin to high-level programming languages)
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Only one of the four conditions is primitive: the compactness
condition

In practice, condition (ii) is rarely checked

If you are estimating a probability, then compactness is easily
verified

But if you run a regression, then you are implicitly thinking that your
coefficients come from a closed and bounded set

Condition (i) is substantive and non-primitive

It has to be checked on a case by case basis
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For the maximum likelihood model, we actually have checked
condition (i) already

Recall from the week 10 lecture, that for 𝜃 ≠ 𝜃0,
E (ln 𝑓𝑌(𝑌|𝜃0)) > E (ln 𝑓𝑌(𝑌|𝜃))

This means that the expected value of the log likelihood is
maximized at the true value of the parameter

In other applications, condition (i) may not hold
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What about conditions (iii) and (iv)?

They are non-primitive regularity conditions

While they are not easy to interpret, we believe that they may be
easily satisfied nevertheless

The following Lemma helps when 𝑄𝑁 is based on a sample average,
that is, when we consider M-estimators
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Lemma (Uniform Law of Large Numbers for M-Estimators)

Let 𝑄𝑁(𝑊𝑖, 𝜃) = 1
𝑁 ∑𝑁

𝑖=1 𝑞(𝑊𝑖, 𝜃) and 𝑄0(𝜃) = E (𝑞(𝑊𝑖, 𝜃)). If

(i) the sample data 𝑊𝑖 are iid;
(ii) Θ is compact;
(iii) 𝑞(𝑊𝑖, ⋅) is continuous at each 𝜃 ∈ Θ with probability one;
(iv) there exists a dominating function 𝑑(𝑊𝑖) with E (𝑑(𝑊𝑖)) < ∞,

such that |𝑞(𝑊𝑖, 𝜃)| ≤ 𝑑(𝑊𝑖) for all 𝜃 ∈ Θ;

then

• 𝑄𝑁(𝑊𝑖, 𝜃) converges uniformly in probability to 𝑄0(𝜃), and
• 𝑄0(𝜃) is continuous.
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The conditions in the Lemma are all primitive and also quite weak

Notably, 𝑞(𝑊𝑖, ⋅) can be discontinuous on a set of measure zero

Conditions (iii) and (iv), both on 𝑞, are reasonably easy to check

Condition (iii) can be checked by inspection and condition (iv) boils
down to existence of moments

OLS example (scalar 𝑋𝑖 )

• let 𝛽 be from the compact set [𝑏, ̄𝑏]
• 𝑞(𝑊𝑖, 𝜃) = −(𝑌𝑖 − 𝑋𝑖𝛽)2, clearly continuous
• dominating function

|𝑞(𝑋𝑖, 𝑌𝑖, 𝛽)| ∶= (𝑌𝑖 − 𝑋𝑖𝛽)2 = 2𝑌2
𝑖 + 2𝛽2𝑋2

𝑖 − (𝑌𝑖 + 𝑋𝑖𝛽)2

≤ 2𝑌2
𝑖 + 2𝛽2𝑋2

𝑖

≤ 2𝑌2
𝑖 + 2�̄�2𝑋2

𝑖 =∶ 𝑑(𝑋𝑖, 𝑌𝑖)

• finite second moments of 𝑋𝑖 and 𝑌𝑖 imply E(𝑑(𝑋𝑖, 𝑌𝑖)) < ∞
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Connecting the dots:

To establish consistency of an extremum estimator, we need to check
the four conditions of the Lemma plus the identification condition of
the theorem
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For the class of extremum estimators, there also exists a generic
result on the asymptotic distribution

Conditions to establish asymptotic normality are a bit involved

However, if we restrict attention to extremum estimators with
objective functions that are sufficiently smooth, then we can use an
intuitive approximation via the mean value theorem

All we need is for 𝑄𝑁 to be twice continuously differentiable
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Sketch of proof: asymptotic normality
(this is similar to the asymptotic distribution of MLE in week 10)

Notice, by definition, ∇𝜃𝑄𝑁(𝑊𝑖, ̂𝜃EE) = 0

Apply the mean value theorem around 𝜃0
0 = ∇𝜃𝑄𝑁(𝑊𝑖, ̂𝜃EE) = ∇𝜃𝑄𝑁(𝑊𝑖, 𝜃0) + (∇𝜃𝜃𝑄𝑁(𝑊𝑖, ̃𝜃)) ( ̂𝜃EE − 𝜃0) ,

where ̃𝜃 is between 𝜃0 and ̂𝜃EE

Multiplying through by √𝑁 and solving for √𝑁 ( ̂𝜃EE − 𝜃0),

√𝑁 ( ̂𝜃EE − 𝜃0) = − (∇𝜃𝜃𝑄𝑁(𝑊𝑖, ̃𝜃))−1 ⋅ √𝑁 ∇𝜃𝑄𝑁(𝑊𝑖, 𝜃0)

↓𝑝 (WLLN) ↓𝑑 (CLT)

= 𝐻−1 ⋅ 𝒩(0, Σ)
d→ 𝒩 (0, 𝐻−1Σ𝐻−1)

(also using Slutsky’s theorem)
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The formal result is

Theorem (Asymptotic Normality of Extremum Estimators)
Let ̂𝜃EE be an extremum estimator such that ̂𝜃EE = 𝜃 + o𝑝(1). If

(i) 𝜃0 ∈ interior(Θ);
(ii) 𝑄𝑁(𝑊𝑖, 𝜃) is twice continuously differentiable in a

neighborhood 𝑇 of 𝜃0;

(iii) √𝑁∇𝜃𝑄𝑁(𝜃0) d→ 𝒩 (0, Σ);
(iv) there exists 𝐻(𝜃) that is continuous at 𝜃0 and

sup
𝜃∈𝑇

∣∇𝜃𝜃𝑄𝑁(𝑊𝑖, 𝜃) − 𝐻(𝜃)∣ = o𝑝(1)

(v) 𝐻 ∶= 𝐻(𝜃0) is nonsingular;

then √𝑁 ( ̂𝜃EE − 𝜃0) d→ 𝒩 (0, 𝐻−1Σ𝐻−1).
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Condition (i) is necessary because estimators may not be
asymptotically normal when 𝜃0 sits at the boundary of Θ
(this is not easy to show)

Condition (ii) is stronger than necessary, but convenient to obtain
the Hessian matrix as the probability limit

Condition (iii) is easy to establish for M-estimators with
differentiable 𝑞 (such as OLS, IV, and MLE)

Condition (iv) is a U-WLLN for the Hessian

Condition (v) makes sure that the Hessian is invertible
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For M-estimators in which 𝑞 is differentiable, it is easy to estimate
the asymptotic variance 𝐻−1Σ𝐻−1

You can simply use plug-in estimators for 𝐻 and Σ

Consistent estimators are

�̂� = ∇𝜃𝜃𝑄𝑁(𝑊𝑖, ̂𝜃EE) = (1/𝑁)
𝑁

∑
𝑖=1

∇𝜃𝜃𝑞(𝑊𝑖, ̂𝜃EE)

Σ̂ = (1/𝑁)
𝑁

∑
𝑖=1

∇𝜃𝑞(𝑊𝑖, ̂𝜃EE)∇𝜃𝑞(𝑊𝑖, ̂𝜃EE)′
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Last Slide (yey!)

I hope you …

• enjoyed it a bit
(didn’t hate it too much!?)

• learned something useful

Feel free to come by my office for a chat anytime!

Good luck with all your exams!
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