THE AUSTRALIAN NATIONAL UNIVERSITY

First Semester Final Examination- June, 2022

Advanced Econometrics I

(EMET 4314/8014)

Reading Time: 0 Minutes

Writing Time: 120 Minutes

Instructions

- Answer all 4 questions of this handout.
- Write on paper or an electronic device (such as an Ipad).
- Handwritten answers only! Do not type anything.
- Work on your answers only between 12:00pm-2:00pm.
- If written on a piece of paper, scan your work and upload to Wattle.
- If using an electronic device, upload your file to Wattle.
- Upload your file as soon as possible after 2:00pm.

You have at most 15 minutes to scan and upload your document.

- Provide complete, self-contained, and correct answers.
- Make reasonable assumptions where necessary.
- Justify all steps that are not obvious.

Beginning of Exam Questions

1. [1 mark total] Write the following statement by hand:

I hereby declare

- to uphold the principles of academic integrity, as defined in the University Academic Misconduct Rules;
- that your work in the final exam in no part involves copying, cheating, collusion, fabrication, plagiarism or recycling.

Important

Do NOT work on your exam after 2:00pm!
Scan and upload immediately at 2:00pm!
2. [20 marks total]

Consider the scalar model $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+e_{i}$ where $e_{i} \mid X_{i 1} \sim \mathcal{N}(0,1)$.
You have available a random sample $\left(X_{i 1}, Y_{i}\right), i=1, \ldots, N$.
Let $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ be the OLS estimators obtained from a regression of Y_{i} on a constant and $X_{i 1}$.
(a) [2 marks] State $\widehat{\beta}_{1}$ in terms of sample moments of the data (that is, sample means, variances, and covariances). No derivation, just state the result.
(b) [2 marks] Derive $\operatorname{Var}\left(\widehat{\beta}_{1} \mid X_{i 1}\right)$.

You observe an additional variable, $X_{i 2}$. Denote by $\widehat{\pi}_{0}$ and $\widehat{\pi}_{1}$ the OLS estimators from a regression of $X_{i 1}$ on a constant and $X_{i 2}$. Define $\widehat{X}_{i 1}:=\widehat{\pi}_{0}+\widehat{\pi}_{1} X_{i 2}$.
Let $\widehat{\theta}_{0}$ and $\widehat{\theta}_{1}$ be the OLS estimators obtained from a regression of Y_{i} on a constant and $\widehat{X}_{i 1}$.
(c) [4 marks] Derive $\hat{\theta}_{1}$ in terms of sample moments of the data.
(d) [2 marks] Derive $\operatorname{Var}\left(\widehat{\theta}_{1} \mid X_{i 1}, X_{i 2}\right)$.
(e) [5 marks] Prove or disprove: $\hat{\theta}_{1}=\beta_{1}+o_{p}(1)$.
(f) [5 marks] Which estimator do you prefer: $\widehat{\beta}_{1}$ or $\widehat{\theta}_{1}$? Why?
3. [20 marks total - 5 marks each]

Are the following statements true or false? Provide a complete explanation. Use mathematical derivations where necessary.
(Note: you will not receive any credit without providing a correct explanation.)
(a) Let the discrete random variable have the following distribution:
$P(Y=1)=\pi_{1}, \quad P(Y=2)=\pi_{2}, \quad P(Y=3)=\pi_{3}$,
where $\pi_{1} \in(0,1), \pi_{2} \in(0,1), \pi_{3} \in(0,1)$, and $\pi_{1}+\pi_{2}+\pi_{3}=1$.
In a random sample of size N you observe N_{1} realizations for which $Y=1$, N_{2} realizations for which $Y=2, N_{3}$ realizations for which $Y=3$, so that $N_{1}+N_{2}+N_{3}=N$.
Then the maximum likelihood estimate of π_{1} is N_{1} / N.
(b) Let X be a Bernoulli random variable, that is, $X=1$ with probability π and $X=0$ with probability $1-\pi$ where $\pi \in(0,1)$. Let Y be another random variable (not Bernoulli distributed) and assume that $\operatorname{Cov}(X, Y) \neq 0$.
Then $\operatorname{Cov}(X, X Y)=\mathrm{E}(Y)+(1-\pi) \cdot \operatorname{Cov}(X, Y)$.
(c) Let the random variable Z be such that $E(Z)=3$ and $E\left(Z^{2}\right)=13$. Then a lower bound for $P(-2<Z<8)$ is given by $21 / 25$.

Note: part (d) on next page ...
Important
Do NOT work on your exam after 2:00pm!
Scan and upload immediately at 2:00pm!
(d) The Monte Carlo simulation of the simple schooling model from week 7, as summarized by the Julia code and corresponding output below, illustrates that the OLS estimator is a consistent estimator for the return to schooling.

Julia Code

using Distributions, Random, Plots
function schooling_sample (b2, n;

$$
\mathrm{p}=13.2, \mathrm{~b} 1=4.7, \mathrm{~b} 3=0,
$$

$$
\mathrm{su}=0.175, \mathrm{sa}=7.2)
$$

$\mathrm{u}=\operatorname{rand}(\operatorname{Normal}(0, \operatorname{sqrt}(\mathrm{su})), \mathrm{n})$
$\mathrm{a}=\operatorname{rand}(\operatorname{Normal}(0, \operatorname{sqrt}(\mathrm{sa})), \mathrm{n})$
S $=\mathrm{p} .+\mathrm{a}$
$\mathrm{Y}=\mathrm{b} 1 .+\mathrm{b} 2 * \mathrm{~S} .+\mathrm{b} 3 * \mathrm{a} .+\mathrm{u}$
return S, Y
end

```
rep = 100000
b2 = Array{Float64}(undef, rep)
for r in 1:rep
    n = 1000
    x, y = schooling_sample (0.075, n)
    b1_tmp, b2_tmp= [ones(n, 1) x]\y
    b2[r] = b2_tmp
end
histogram(b2, normed = false)
```


Output

4. [20 marks total]

Consider the model

$$
Y_{i}=\mu\left(X_{i}, \theta\right)+e_{i}, \quad \text { where } e_{i} \mid X_{i} \sim \mathcal{N}\left(0, \sigma_{e}^{2}\right) .
$$

The variables Y_{i} and e_{i} are scalars and $\operatorname{dim}\left(X_{i}\right)=K \times 1$ and $\operatorname{dim}(\theta)=L \times 1$ where $K \neq L$. The functional form of μ is considered known but is left unspecified here.
You have available a random sample $\left(X_{i}, Y_{i}\right), i=1, \ldots, N$, to estimate the unknown parameters θ and the scalar σ_{e}^{2}.
(a) [3 marks] Derive the conditional log likelihood function $L\left(\theta, \sigma_{e}^{2}\right)$.
(b) [3 marks] Derive the score function.
(c) [3 marks] Derive the expected value of the score conditional on X_{i}.
(d) [2 marks] Determine the MLE of σ_{e}^{2} as a function of $\hat{\theta}^{\mathrm{ML}}$ (the MLE of θ).
(e) [3 marks] Derive the Hessian matrix as the derivative of the score.
(f) [6 marks] Show that the information equality holds here.

Important
Do NOT work on your exam after 2:00pm!
Scan and upload immediately at 2:00pm!

End of Exam

