THE AUSTRALIAN NATIONAL UNIVERSITY

First Semester Final Examination-June, 2022

Advanced Econometrics I

(EMET 4314/8014)

Reading Time: 0 Minutes Writing Time: 120 Minutes

Instructions

- Answer all 4 questions of this handout.
- Write on paper or an electronic device (such as an Ipad).
- Handwritten answers only! Do not type anything.
- Work on your answers only between 12:00pm–2:00pm.
- If written on a piece of paper, scan your work and upload to Wattle.
- If using an electronic device, upload your file to Wattle.
- Upload your file as soon as possible after 2:00pm.
 You have at most 15 minutes to scan and upload your document.
- Provide complete, self-contained, and correct answers.
- Make reasonable assumptions where necessary.
- Justify all steps that are not obvious.

Beginning of Exam Questions

1. [1 mark total] Write the following statement by hand:

I hereby declare

- to uphold the principles of academic integrity, as defined in the University Academic Misconduct Rules;
- that your work in the final exam in no part involves copying, cheating, collusion, fabrication, plagiarism or recycling.

IMPORTANT

Do NOT work on your exam after 2:00pm! Scan and upload immediately at 2:00pm!

2. [20 marks total]

Consider the scalar model $Y_i = \beta_0 + \beta_1 X_{i1} + e_i$ where $e_i | X_{i1} \sim \mathcal{N}(0, 1)$.

You have available a random sample (X_{i1}, Y_i) , i = 1, ..., N.

Let $\hat{\beta}_0$ and $\hat{\beta}_1$ be the OLS estimators obtained from a regression of Y_i on a constant and X_{i1} .

- (a) [2 marks] State $\hat{\beta}_1$ in terms of sample moments of the data (that is, sample means, variances, and covariances). No derivation, just state the result.
- (b) [2 marks] Derive Var $(\widehat{\beta}_1|X_{i1})$.

You observe an additional variable, X_{i2} . Denote by $\widehat{\pi}_0$ and $\widehat{\pi}_1$ the OLS estimators from a regression of X_{i1} on a constant and X_{i2} . Define $\widehat{X}_{i1} := \widehat{\pi}_0 + \widehat{\pi}_1 X_{i2}$.

Let $\hat{\theta}_0$ and $\hat{\theta}_1$ be the OLS estimators obtained from a regression of Y_i on a constant and \hat{X}_{i1} .

- (c) [4 marks] Derive $\hat{\theta}_1$ in terms of sample moments of the data.
- (d) [2 marks] Derive Var $(\widehat{\theta}_1|X_{i1}, X_{i2})$.
- (e) [5 marks] Prove or disprove: $\hat{\theta}_1 = \beta_1 + o_p(1)$.
- (f) [5 marks] Which estimator do you prefer: $\hat{\beta}_1$ or $\hat{\theta}_1$? Why?

3. [20 marks total - 5 marks each]

Are the following statements true or false? Provide a complete explanation. Use mathematical derivations where necessary.

(Note: you will not receive any credit without providing a correct explanation.)

(a) Let the discrete random variable have the following distribution:

$$P(Y = 1) = \pi_1$$
, $P(Y = 2) = \pi_2$, $P(Y = 3) = \pi_3$, where $\pi_1 \in (0,1)$, $\pi_2 \in (0,1)$, $\pi_3 \in (0,1)$, and $\pi_1 + \pi_2 + \pi_3 = 1$.

In a random sample of size N you observe N_1 realizations for which Y = 1, N_2 realizations for which Y = 2, N_3 realizations for which Y = 3, so that $N_1 + N_2 + N_3 = N$.

Then the maximum likelihood estimate of π_1 is N_1/N .

- (b) Let X be a Bernoulli random variable, that is, X=1 with probability π and X=0 with probability $1-\pi$ where $\pi\in(0,1)$. Let Y be another random variable (not Bernoulli distributed) and assume that $\mathrm{Cov}(X,Y)\neq 0$. Then $\mathrm{Cov}(X,XY)=\mathrm{E}(Y)+(1-\pi)\cdot\mathrm{Cov}(X,Y)$.
- (c) Let the random variable Z be such that E(Z) = 3 and $E(Z^2) = 13$. Then a lower bound for P(-2 < Z < 8) is given by 21/25.

Note: part (d) on next page ...

IMPORTANT

Do NOT work on your exam after 2:00pm! Scan and upload immediately at 2:00pm! (d) The Monte Carlo simulation of the simple schooling model from week 7, as summarized by the Julia code and corresponding output below, illustrates that the OLS estimator is a consistent estimator for the return to schooling.

```
Julia Code
 using Distributions, Random, Plots
 function schooling_sample(b2, n;
              p=13.2, b1=4.7, b3=0,
              su = 0.175, sa = 7.2)
     u = rand(Normal(0, sqrt(su)), n)
     a = rand(Normal(0, sqrt(sa)), n)
     S = p .+ a
     Y = b1 + b2*S + b3*a + u
     return S, Y
 end
 rep = 100000
 b2 = Array\{Float64\}(undef, rep)
 for r in 1:rep
     n = 1000
     x, y = schooling\_sample(0.075, n)
     b1_{tmp}, b2_{tmp} = [ones(n, 1) x] \setminus y
     b2[r] = b2\_tmp
 end
 histogram (b2, normed = false)
```


4. [20 marks total]

Consider the model

$$Y_i = \mu(X_i, \theta) + e_i$$
, where $e_i | X_i \sim \mathcal{N}(0, \sigma_e^2)$.

The variables Y_i and e_i are scalars and $\dim(X_i) = K \times 1$ and $\dim(\theta) = L \times 1$ where $K \neq L$. The functional form of μ is considered *known* but is left unspecified here.

You have available a random sample (X_i, Y_i) , i = 1, ..., N, to estimate the unknown parameters θ and the scalar σ_e^2 .

- (a) [3 marks] Derive the conditional log likelihood function $L(\theta, \sigma_e^2)$.
- (b) [3 marks] Derive the score function.
- (c) [3 marks] Derive the expected value of the score conditional on X_i .
- (d) [2 marks] Determine the MLE of σ_e^2 as a function of $\widehat{\theta}^{\text{ML}}$ (the MLE of θ).
- (e) [3 marks] Derive the Hessian matrix as the derivative of the score.
- (f) [6 marks] Show that the information equality holds here.

IMPORTANT

Do NOT work on your exam after 2:00pm! Scan and upload immediately at 2:00pm!

End of Exam