Assignment 5

(due: Tuesday week 6, 11:00am)

Submission Instructions: Same as last week.

The solutions will be discussed in the Friday workshop during week 5. Please let me know which exercises I should focus on.

Exercises

Provide transparent derivations. Justify steps that are not obvious. Use self sufficient proofs. Make reasonable assumptions where necessary.

1. Remember the following parameter from the week 5 lecture:

$$\pi = \mathbf{E}(Z_i Z_i')^{-1} \mathbf{E}(Z_i X_i'),$$

where $X_i = (X'_{i1}, X'_{i2})'$ and $Z_i = (X'_{i1}, Z'_{i2})'$. I claimed that π is an upper triangular block matrix. Show this!

Make use of the following result for the inverse of *partitioned* (or block) matrices (taken from Greene's textbook):

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^{-1} = \begin{pmatrix} A_{11}^{-1} (I + A_{12} F_2 A_{21} A_{11}^{-1}) & -A_{11}^{-1} A_{12} F_2 \\ -F_2 A_{21} A_{11}^{-1} & F_2 \end{pmatrix},$$

where
$$F_2 := (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1}$$
.

2. Let $Y_i = X_i \beta + e_i$ where X_i is a scalar random variable and $\operatorname{E}(e_i|X_i) = 0$. You observe (\widetilde{X}_i, Y_i) with $\widetilde{X}_i := X_i + r_i$ where r_i is a random error. Derive the probability limit of the OLS estimator in the regression of Y_i on \widetilde{X}_i . For simplicity, assume that $\operatorname{E} X_i = \operatorname{E} r_i = 0$.

What is the probability limit equal to when the variance of r_i is zero? When the variance of r_i is very large? What is the intuition here?

Hint: Your probability limit should have the form $\beta(1 - stuff)$, where stuff depends only on the population variances of r_i and X_i .

Note: This phenomenon is usually referred to as *measurement error bias* or *attenuation bias*. It is not good to use the word *bias* here though. After all, we are not studying the expected value of the OLS estimator, instead we are studying its probability limit and show that it does not equal β . Biasedness and inconsistency are not the same thing.

- 3. Prove that $\hat{\beta}^{IV}$ is consistent.
- 4. Derive the asymptotic distribution of $\sqrt{N}(\hat{\beta}^{\text{IV}} \beta)$.