Assignment 3

(due: Tuesday week 4, 11:00am)

Submission Instructions: Same as last week.

The solutions will be discussed in the Friday workshop during week 4. Please let me know which exercises I should focus on.

Exercises

Provide transparent derivations. Justify steps that are not obvious. Use self sufficient proofs. Make reasonable assumptions where necessary.

- 1. Let Z be a random variable with $EZ^2 < \infty$. Prove that $Z_N \stackrel{d}{\to} Z$ implies $Z_N = O_p(1)$.
- 2. Let $Y = X\beta^* + u$ with dim $X = N \times K$ and the usual definitions. Define the *projection* matrix $P_X := X(X'X)^{-1}X'$ and the residual maker matrix $M_X := I_N P_X$. Show that:
 - (i) $P_XY = \hat{Y}$ (hence the name *projection matrix*)
 - (ii) $M_XY = \hat{u}$ (hence the name residual maker matrix)
 - (iii) $M_X u = \hat{u}$
 - (iv) Symmetry: $P_X = P_X'$ and $M_X = M_X'$
 - (v) Idempotency: $P_X P_X = P_X$ and $M_X M_X = M_X$
 - (vi) tr $P_X={\rm rank}\ P_X=K$ and tr $M_X={\rm rank}\ M_X=N-K$ Hint: Use the spectral decomposition for symmetric matrices: $A=C\Lambda C'$ where Λ is the diagonal matrix collecting all real eigenvalues on the diagonal and C is an eigenvector matrix satisfying C'C=I.
- 3. Use a derivation similar to lecture notes 3 to show that $\sum_{i=1}^{N} \hat{u}_i^2/(N-K)$ is an unbiased estimator for σ_u^2 .
- 4. Consider the asymptotic distribution of $\sqrt{N}(\hat{\beta}^{\text{OLS}}-\beta^*)$ under the assumption of ho-moskedasticity, that is: $\mathrm{E}(u_i^2|X_i)=\sigma_u^2$ where $\sigma_u^2\in\mathbb{R}$. Note, as usual, $\beta^*=\mathrm{E}(X_iX_i')^{-1}\mathrm{E}(X_iY_i)$.
 - (a) Derive the asymptotic distribution of $\sqrt{N}(\hat{\beta}^{\text{OLS}} \beta^*)$ under homoskedasticity. Justify each step!
 - (b) Suggest a consistent estimator for the asymptotic variance of $\sqrt{N}(\hat{\beta}^{\text{OLS}}-\beta^*)$ under homoskedasticity.
 - (c) Prove that your estimator from part (b) is consistent. In your proof, make use of the $o_p(1)$ and $O_p(1)$ notation. Justify each step!