Advanced Econometrics I EMET4314/8014 Semester 1, 2025 Juergen Meinecke Research School of Economics ANU

Assignment 3

(due: Tuesday week 4, 11:00am)

Submission Instructions: Same as last week.

Exercises

Provide transparent derivations. Justify steps that are not obvious. Use self sufficient proofs. Make reasonable assumptions where necessary.

- 1. Let Z be a random variable with $EZ^2 < \infty$. Prove that $Z_N \xrightarrow{d} Z$ implies $Z_N = O_p(1)$.
- 2. The pdf of a normal distribution is $f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2\right)$, for $-\infty < y < \infty$.
 - (a) Derive the moment generating function of a normally distributed random variable. Denote it by $M_Y(t; (\mu, \sigma))$.
 - (b) Take the first two derivatives of $M_Y(t; (\mu, \sigma))$ and evaluate them at zero.
 - (c) Evaluate the mgf for the standard normal case: $M_Y(t; (0, 1))$. (This proves a Lemma from the week 3 lecture notes.)
- 3. Let $Y = X\beta^* + u$ with dim $X = N \times K$ and the usual definitions. Define the *projection* matrix $P_X := X(X'X)^{-1}X'$ and the *residual maker matrix* $M_X := I_N P_X$. Show that:
 - (i) $P_X Y = \hat{Y}$ (hence the name *projection matrix*)
 - (ii) $M_X Y = \hat{u}$ (hence the name *residual maker matrix*)
 - (iii) $M_X u = \hat{u}$
 - (iv) Symmetry: $P_X = P'_X$ and $M_X = M'_X$
 - (v) Idempotency: $P_X P_X = P_X$ and $M_X M_X = M_X$
 - (vi) tr $P_X = K$ and tr $M_X = N K$
- 4. Use a derivation similar to lecture notes 3 to show that $\sum_{i=1}^{N} \hat{u}_i^2 / (N K)$ is an unbiased estimator for σ_u^2 .

- 5. Consider the asymptotic distribution of $\sqrt{N}(\hat{\beta}^{OLS} \beta^*)$ under the assumption of *homoskedasticity*, that is: $E(u_i^2|X_i) = \sigma_u^2$ where $\sigma_u^2 \in \mathbb{R}$. Note, as usual, $\beta^* = E(X_iX_i')^{-1}E(X_iY_i)$.
 - (a) Derive the asymptotic distribution of $\sqrt{N}(\hat{\beta}^{\text{OLS}} \beta^*)$ under homoskedasticity. Justify each step!
 - (b) Suggest a consistent estimator for the asymptotic variance of $\sqrt{N}(\hat{\beta}^{\text{OLS}} \beta^*)$ under homoskedasticity.
 - (c) Prove that your estimator from part (b) is consistent. In your proof, make use of the $o_p(1)$ and $O_p(1)$ notation. Justify each step!